HyperLogLog 使用及其算法原理详细讲解

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: HyperLogLog 使用及其算法原理详细讲解

本文已收录于专栏


❤️《Redis之大厂必备技能包》❤️


欢迎各位关注、三连博主的文章及专栏,全套Redis学习资料,大厂必备技能!


目录


一、简介


二、命令


2.1 PFADD key element [element …]


2.2 PFCOUNT key [key …]


2.3 PFMERGE destkey sourcekey [sourcekey …]


三、原理


3.1 伯努利试验


3.2 估值优化


3.3 HyperLogLog的实现


3.4 代码实现-BernoulliExperiment(伯努利试验)


3.5 代码实现-HyperLogLog


一、简介

首先抛出一个业务问题:

假设产品经理让你设计一个模块,来统计PV(Page View页面的访问量),那么你会怎么做?

我想很多人对于PV(Page View页面的访问量)的统计会很快的想到使用Redis的incr、incrby指令,给每个网页配置一个独立Redis计数器就可以了,把这个技术区的key后缀加上当它的日期,这样一个请求过来,就可以通过执行incr、incrby指令统计所有PV。


此时当你完成这个需求后,产品经理又让你设计一个模块,统计UV(Unique Visitor,独立访客),那么你又会怎么做呢?

UV与PV不一样,UV需要根据用户ID去重,如果用户没有ID我们可能需要考虑使用用户访问的IP或者其他前端穿过了的唯一标志来区分,此时你可能会想到使用如下的方案来统计UV。


存储在MySQL数据库表中,使用distinct count计算不重复的个数

使用Redis的set、hash、bitmaps等数据结构来存储,比如使用set,我们可以使用用户ID,通过sadd加入set集合即可

但是上面的两张方案都存在两个比较大的问题:


随着数据量的增加,存储数据的空间占用越来越大,对于非常大的页面的UV统计,基本不合实际

统计的性能比较慢,虽然可以通过异步方式统计,但是性能并不理想

因此针对UV的统计,我们将会考虑使用Redis的新数据类型HyperLogLog.

HyperLogLog是用来做基数统计的算法,它提供不精确的去重计数方案(这个不精确并不是非常不精确),标准误差是0.81%,对于UV这种统计来说这样的误差范围是被允许的。HyperLogLog的优点在于,输入元素的数量或者体积非常大时,基数计算的存储空间是固定的。在Redis中,每个HyperLogLog键只需要花费12KB内存,就可以计算接近2^64个不同的基数。

但是:HyperLogLog只能统计基数的大小(也就是数据集的大小,集合的个数),他不能存储元素的本身,不能向set集合那样存储元素本身,也就是说无法返回元素。


HyperLogLog指令都是pf(PF)开头,这是因为HyperLogLog的发明人是Philippe Flajolet,pf是他的名字的首字母缩写。


二、命令

2.1 PFADD key element [element …]

将任意数量的元素添加到指定的 HyperLogLog 里面,当PFADD key element [element …]指令执行时,如果HyperLogLog的估计近似基数在命令执行之后出现了变化,那么命令返回1,否则返回0,如果HyperLogLog命令执行时给定的键不存在,那么程序将先创建一个空的HyperLogLog结构,再执行命令。

该命令可以只给定key不给element,这种以方式被调用时:


如果给定的键存在且已经是一个HyperLogLog,那么这种调用不会产生任何效果

如果给定的键不存在,那么命令会闯进一个空的HyperLogLog,并且给客户端返回1

返回值:

如果HyperLogLog数据结构内部存储的数据被修改了,那么返回1,否则返回0


时间复杂度:

O(1)


使用示例:

image.png2.2 PFCOUNT key [key …]

PFCOUNT 指令后面可以跟多个key,当PFCOUNT key [key …]命令作用于单个键时,返回存储在给定键的HyperLogLog的近似基数,如果键不存在,则返回0;当PFCOUNT key [key …]命令作用于多个键时,返回所给定HyperLogLog的并集的近似基数,这个近似基数是通过将索引给定HyperLogLog合并至一个临时HyperLogLog来计算得出的。


返回值:

返回给定HyperLogLog包含的唯一元素的近似数量的整数值


时间复杂度:

当命令作用于单个HyperLogLog时,时间复杂度为O(1),并且具有非常低的平均常数时间。当命令作用于N个HyperLogLog时,时间复杂度为O(N),常数时间会比单个HyperLogLog要大的多。


使用示例:image.png2.3 PFMERGE destkey sourcekey [sourcekey …]

将多个HyperLogLog合并到一个HyperLogLog中,合并后HyperLogLog的基数接近于所有输入HyperLogLog的可见集合的并集,合并后得到的HyperLogLog会被存储在destkey键里面,如果该键不存在,那么命令在执行之前,会先为该键创建一个空的HyperLogLog。


返回值:

字符串回复,返回OK


时间复杂度:

O(N),其中N为被合并的HyperLogLog的数量,不过这个命令的常数复杂度比较高


使用示例:

image.png三、原理

3.1 伯努利试验

HyperLogLog的算法设计能使用12k的内存来近似的统计2^64个数据,这个和伯努利试验有很大的关系,因此在探究HyperLogLog原理之前,需要先了解一下伯努利试验。


以下是百度百科关于伯努利试验的介绍:


伯努利试验(Bernoulli experiment)是在同样的条件下重复地、相互独立地进行的一种随机试验,其特点是该随机试验只有两种可能结果:发生或者不发生。我们假设该项试验独立重复地进行了n次,那么就称这一系列重复独立的随机试验为n重伯努利试验,或称为伯努利概型。单个伯努利试验是没有多大意义的,然而,当我们反复进行伯努利试验,去观察这些试验有多少是成功的,多少是失败的,事情就变得有意义了,这些累计记录包含了很多潜在的非常有用的信息。


伯努利试验是数据概率论中的一部分,它的典故源于“抛硬币”。

一个硬币只有正面和反面,每次抛硬币出现正反面的概率都是50%,我们一直抛硬币直到出现第一次正面为止,记录抛硬币的次数,这个就被称为一次伯努利试验。伯努利试验需要做非常多的次数,数据才会变得有意义。

对于n次伯努利试验,出现正面的次数为n,假设每次伯努利试验抛掷的次数为k(也就是每次出现正面抛掷的次数),第一次伯努利试验抛掷次数为k1,第n次伯努利试验抛掷次数为kn,在这n次伯努利试验中,抛掷次数最大值为kmax。

上述的伯努利试验,结合极大似然估算方法(极大似然估计),得出n和kmax之间的估算关系:n=2^kmax。很显然这个估算关系是不准确的,例如如下案例:

第一次试验:抛掷1次出现正面,此时k=1,n=1;

第二次实验:抛掷3次出现正面,此时k=3,n=2;

第三次实验:抛掷6次出现正面,此时k=6,n=3;

第n次试验:抛掷10次出现正面,此时k=10,n=n,通过估算关系计算,n=2^10

上述案例可以看出,假设n=3,此时通过估算关系n=2^kmax,2^6 ≠3,而且偏差很大。因此得出结论,这种估算方法误差很大。


3.2 估值优化

关于上述估值偏差较大的问题,可以采用如下方式结合来缩小误差:


增加测试的轮数,取平均值。假设三次伯努利试验为1轮测试,我们取出这一轮试验中最大的的kmax作为本轮测试的数据,同时我们将测试的轮数定位100轮,这样我们在100轮实验中,将会得到100个kmax,此时平均数就是(k_max_1 + … + k_max_m)/m,这里m为试验的轮数,此处为100.

增加修正因子,修正因子是一个不固定的值,会根据实际情况来进行值的调整。

上述这种增加试验轮数,去kmax的平均值的方法,是LogLog算法的实现。因此LogLog它的估算公式如下:

image.pngHyperLogLog与LogLog的区别在于HyperLogLog使用的是调和平均数,并非平均数。调和平均数指的是倒数的平均数(调和平均数)。调和平均数相比平均数能降低最大值对平均值的影响,这个就好比我和马爸爸两个人一起算平均工资,如果用平均值这么一下来我也是年薪数十亿,这样肯定是不合理的。

使用平均数和调和平均数计算方式如下:


假设我的工资20000,马云1000000000

使用平均数的计算方式:(20000 + 1000000000) / 2 = 500010000

调和平均数的计算方式:2/(1/20000 + 1/1000000000) ≈ 40000

很明显,平均工资月薪40000更加符合实际平均值,5个亿不现实。


调和平均数的基本计算公式如下:

image.png

3.3 HyperLogLog的实现

根据3.1和3.2大致可以知道HyperLogLog的实现原理了,它的主要精髓在于通过记录下低位连续零位的最大长度K(也就是上面我们说的kmax),来估算随机数的数量n。image.png任何值在计算机中我们都可以将其转换为比特串,也就是0和1组成的bit数组,我们从这个bit串的低位开始计算,直到出现第一个1为止,这就好比上面的伯努利试验抛硬币,一直抛硬币直到出现第一个正面为止(只是这里是数字0和1,伯努利试验中使用的硬币的正与反,并没有区别)。而HyperLogLog估算的随机数的数量,比如我们统计的UV,就好比伯努利试验中试验的次数。


综上所述,HyperLogLog的实现主要分为三步:

第一步:转为比特串

通过hash函数,将输入的数据装换为比特串,比特串中的0和1可以类比为硬币的正与反,这是实现估值统计的第一步

第二步:分桶

分桶就是上面3.2估值优化中的分多轮,这样做的的好处可以使估值更加准确。在计算机中,分桶通过一个单位是bit,长度为L的大数组S,将数组S平均分为m组,m的值就是多少轮,每组所占有的比特个数是相同的,设为 P。得出如下关系:


L = S.length

L = m * p

数组S的内存 = L / 8 / 1024 (KB)

在HyperLogLog中,我们都知道它需要12KB的内存来做基数统计,原因就是HyperLogLog中m=16834,p=6,L=16834 * 6,因此内存为=16834 * 6 / 8 / 1024 = 12 (KB),这里为何是6位来存储kmax,因为6位可以存储的最大值为64,现在计算机都是64位或32位操作系统,因此6位最节省内存,又能满足需求。

image.png第三步:桶分配

最后就是不同的数据该如何分配桶,我们通过计算hash的方式得到比特串,只要hash函数足够好,就很难产生hash碰撞,我们假设不同的数值计算得到不同的hash值,相同的数值得到相同的hash值(这也是HyperLogLog能用来统计UV的一个关键点),此时我们需要计算值应该放到那个桶中,可以计算的方式很多,比如取值的低16位作为桶索引值,或者采用值取模的方式等等。


3.4 代码实现-BernoulliExperiment(伯努利试验)

首先来写一个3.1中伯努利试验n=2^kmax的估算值验证,这个估算值相对偏差会比较大,在试验轮次增加时估算值的偏差会有一定幅度的减小,其代码示例如下:


package com.lizba.pf;
import java.util.concurrent.ThreadLocalRandom;
/**
 * <p>
 *      伯努利试验 中基数n与kmax之间的关系  n = 2^kmax
 * </p>
 *
 * @Author: Liziba
 * @Date: 2021/8/17 23:16
 */
public class BernoulliExperimentTest {
    static class BitKeeper {
        /** 记录最大的低位0的长度 */
        private int kmax;
        public void random() {
            // 生成随机数
            long value = ThreadLocalRandom.current().nextLong(2L << 32);
            int len = this.lowZerosMaxLength(value);
            if (len > kmax) {
                kmax = len;
            }
        }
        /**
         * 计算低位0的长度
         * 这里如果不理解看下我的注释
         * value >> i 表示将value右移i,  1<= i <32 , 低位会被移出
         * value << i 表示将value左移i,  1<= i <32 , 低位补0
         * 看似一左一右相互抵消,但是如果value低位是0右移被移出后,左移又补回来,这样是不会变的,但是如果移除的是1,补回的是0,那么value的值就会发生改变
         * 综合上面的方法,就能比较巧妙的计算低位0的最大长度
         *
         * @param value
         * @return
         */
        private int lowZerosMaxLength(long value) {
            int i = 1;
            for (; i < 32; i++) {
                if (value >> i << i != value) {
                    break;
                }
            }
            return i - 1;
        }
    }
    static class Experiment {
        /** 测试次数n */
        private int n;
        private BitKeeper bitKeeper;
        public Experiment(int n) {
            this.n = n;
            this.bitKeeper = new BitKeeper();
        }
        public void work() {
            for(int i = 0; i < n; i++) {
                this.bitKeeper.random();
            }
        }
        /**
         * 输出每一轮测试次数n
         * 输出 logn / log2 = k 得 2^k = n,这里的k即我们估计的kmax
         * 输出 kmax,低位最大0位长度值
         */
        public void debug() {
            System.out.printf("%d %.2f %d\n", this.n, Math.log(this.n) / Math.log(2), this.bitKeeper.kmax);
        }
    }
    public static void main(String[] args) {
        for (int i = 0; i < 100000; i++) {
            Experiment experiment = new Experiment(i);
            experiment.work();
            experiment.debug();
        }
    }
}

image.png

3.5 代码实现-HyperLogLog

接下来根据HyperLogLog中采用调和平均数+分桶的方式来做代码优化,模拟简单版本的HyperLogLog算法的实现,其代码如下:

package com.lizba.pf;
import java.util.concurrent.ThreadLocalRandom;
/**
 * <p>
 *      HyperLogLog 简单实现
 * </p>
 *
 * @Author: Liziba
 * @Date: 2021/8/18 10:40
 */
public class HyperLogLogTest {
    static class BitKeeper {
        /** 记录最大的低位0的长度 */
        private int kmax;
        /**
         * 计算低位0的长度,并且保存最大值kmax
         *
         * @param value
         */
        public void random(long value) {
            int len = this.lowZerosMaxLength(value);
            if (len > kmax) {
                kmax = len;
            }
        }
        /**
         * 计算低位0的长度
         * 这里如果不理解看下我的注释
         * value >> i 表示将value右移i,  1<= i <32 , 低位会被移出
         * value << i 表示将value左移i,  1<= i <32 , 低位补0
         * 看似一左一右相互抵消,但是如果value低位是0右移被移出后,左移又补回来,这样是不会变的,但是如果移除的是1,补回的是0,那么value的值就会发生改变
         * 综合上面的方法,就能比较巧妙的计算低位0的最大长度
         *
         * @param value
         * @return
         */
        private int lowZerosMaxLength(long value) {
            int i = 1;
            for (; i < 32; i++) {
                if (value >> i << i != value) {
                    break;
                }
            }
            return i - 1;
        }
    }
    static class Experiment {
        private int n;
        private int k;
        /** 分桶,默认1024,HyperLogLog中是16384个桶,并不适合我这里粗糙的算法 */
        private BitKeeper[] keepers;
        public Experiment(int n) {
            this(n, 1024);
        }
        public Experiment(int n, int k) {
            this.n = n;
            this.k = k;
            this.keepers = new BitKeeper[k];
            for (int i = 0; i < k; i++) {
                this.keepers[i] = new BitKeeper();
            }
        }
        /**
         * (int) (((m & 0xfff0000) >> 16) % keepers.length) -> 计算当前m在keepers数组中的索引下标
         * 0xfff0000 是一个二进制低16位全为0的16进制数,它的二进制数为 -> 1111111111110000000000000000
         * m & 0xfff0000 可以保理m高16位, (m & 0xfff0000) >> 16 然后右移16位,这样可以去除低16位,使用高16位代替高16位
         * ((m & 0xfff0000) >> 16) % keepers.length 最后取模keepers.length,就可以得到m在keepers数组中的索引
         */
        public void work() {
            for (int i = 0; i < this.n; i++) {
                long m = ThreadLocalRandom.current().nextLong(1L << 32);
                BitKeeper keeper = keepers[(int) (((m & 0xfff0000) >> 16) % keepers.length)];
                keeper.random(m);
            }
        }
        /**
         * 估算 ,求倒数的平均数,调和平均数
         *
         * @return
         */
        public double estimate() {
            double sumBitsInverse = 0.0;
            // 求调和平均数
            for (BitKeeper keeper : keepers) {
                sumBitsInverse += 1.0 / (float) keeper.kmax;
            }
            double avgBits = (float) keepers.length / sumBitsInverse;
            return Math.pow(2, avgBits) * this.k;
        }
    }
    /**
     * 测试
     *
     * @param args
     */
    public static void main(String[] args) {
        for (int i = 100000; i < 1000000; i+=100000) {
            Experiment experiment = new Experiment(i);
            experiment.work();
            double estimate = experiment.estimate();
            // i 测试数据
            // estimate 估算数据
            // Math.abs(estimate - i) / i 偏差百分比
            System.out.printf("%d %.2f %.2f\n", i, estimate, Math.abs(estimate - i) / i);
        }
    }
}

image.png

目录
相关文章
机器学习/深度学习 算法 自动驾驶
509 0
|
2月前
|
机器学习/深度学习 算法 搜索推荐
从零开始构建图注意力网络:GAT算法原理与数值实现详解
本文详细解析了图注意力网络(GAT)的算法原理和实现过程。GAT通过引入注意力机制解决了图卷积网络(GCN)中所有邻居节点贡献相等的局限性,让模型能够自动学习不同邻居的重要性权重。
465 0
从零开始构建图注意力网络:GAT算法原理与数值实现详解
|
3月前
|
机器学习/深度学习 算法 文件存储
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
神经架构搜索(NAS)正被广泛应用于大模型及语言/视觉模型设计,如LangVision-LoRA-NAS、Jet-Nemotron等。本文回顾NAS核心技术,解析其自动化设计原理,探讨强化学习、进化算法与梯度方法的应用与差异,揭示NAS在大模型时代的潜力与挑战。
885 6
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
|
3月前
|
传感器 算法 定位技术
KF,EKF,IEKF 算法的基本原理并构建推导出四轮前驱自主移动机器人的运动学模型和观测模型(Matlab代码实现)
KF,EKF,IEKF 算法的基本原理并构建推导出四轮前驱自主移动机器人的运动学模型和观测模型(Matlab代码实现)
132 2
|
3月前
|
算法
离散粒子群算法(DPSO)的原理与MATLAB实现
离散粒子群算法(DPSO)的原理与MATLAB实现
191 0
|
4月前
|
机器学习/深度学习 人工智能 编解码
AI视觉新突破:多角度理解3D世界的算法原理全解析
多视角条件扩散算法通过多张图片输入生成高质量3D模型,克服了单图建模背面细节缺失的问题。该技术模拟人类多角度观察方式,结合跨视图注意力机制与一致性损失优化,大幅提升几何精度与纹理保真度,成为AI 3D生成的重要突破。
411 0
|
4月前
|
算法 区块链 数据安全/隐私保护
加密算法:深度解析Ed25519原理
在 Solana 开发过程中,我一直对 Ed25519 加密算法 如何生成公钥、签名以及验证签名的机制感到困惑。为了弄清这一点,我查阅了大量相关资料,终于对其流程有了更清晰的理解。在此记录实现过程,方便日后查阅。
516 1
|
5月前
|
消息中间件 存储 缓存
zk基础—1.一致性原理和算法
本文详细介绍了分布式系统的特点、理论及一致性算法。首先分析了分布式系统的五大特点:分布性、对等性、并发性、缺乏全局时钟和故障随时发生。接着探讨了分布式系统理论,包括CAP理论(一致性、可用性、分区容错性)和BASE理论(基本可用、软状态、最终一致性)。文中还深入讲解了两阶段提交(2PC)与三阶段提交(3PC)协议,以及Paxos算法的推导过程和核心思想,强调了其在ZooKeeper中的应用。最后简述了ZAB算法,指出其通过改编的两阶段提交协议确保节点间数据一致性,并在Leader故障时快速恢复服务。这些内容为理解分布式系统的设计与实现提供了全面的基础。
|
5月前
|
存储 算法 安全
Java中的对称加密算法的原理与实现
本文详细解析了Java中三种常用对称加密算法(AES、DES、3DES)的实现原理及应用。对称加密使用相同密钥进行加解密,适合数据安全传输与存储。AES作为现代标准,支持128/192/256位密钥,安全性高;DES采用56位密钥,现已不够安全;3DES通过三重加密增强安全性,但性能较低。文章提供了各算法的具体Java代码示例,便于快速上手实现加密解密操作,帮助用户根据需求选择合适的加密方案保护数据安全。
416 58

热门文章

最新文章