k8s容器云架构之dubbo微服务—K8S(14)监控实战-grafana出图_alert告警

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
容器服务 Serverless 版 ACK Serverless,317元额度 多规格
容器服务 Serverless 版 ACK Serverless,952元额度 多规格
简介: 博客地址:https://www.cnblogs.com/sseban哔哩哔哩:https://space.bilibili.com/394449264k8s监控实战-grafana出图_alert告警

k8s监控实战-grafana出图_alert告警

目录

  • k8s监控实战-grafana出图_alert告警
  • 1 使用炫酷的grafana出图
  • 1.1 部署grafana
  • 1.1.1 准备镜像
  • 1.1.2 准备rbac资源清单
  • 1.1.3 准备dp资源清单
  • 1.1.4 准备svc资源清单
  • 1.1.5 准备ingress资源清单
  • 1.1.6 域名解析
  • 1.1.7 应用资源配置清单
  • 1.2 使用grafana出图
  • 1.2.1 浏览器访问验证
  • 1.2.2 进入容器安装插件
  • 1.2.3 配置数据源
  • 1.2.4 添加K8S集群信息
  • 1.2.5 查看k8s集群数据和图表
  • 2 配置alert告警插件
  • 2.1 部署alert插件
  • 2.1.1 准备docker镜像
  • 2.1.2 准备cm资源清单
  • 2.1.3 准备dp资源清单
  • 2.1.4 准备svc资源清单
  • 2.1.5 应用资源配置清单
  • 2.2 K8S使用alert报警
  • 2.2.1 k8s创建基础报警规则文件
  • 2.2.2 K8S 更新配置
  • 2.2.3 测试告警

1 使用炫酷的grafana出图

prometheus的dashboard虽然号称拥有多种多样的图表,但是实在太简陋了,一般都用专业的grafana工具来出图

grafana官方dockerhub地址

grafana官方github地址

grafana官网

1.1 部署grafana

1.1.1 准备镜像

docker pull grafana/grafana:5.4.2
docker tag  6f18ddf9e552 harbor.zq.com/infra/grafana:v5.4.2
docker push harbor.zq.com/infra/grafana:v5.4.2

准备目录

mkdir /data/k8s-yaml/grafana
cd    /data/k8s-yaml/grafana

1.1.2 准备rbac资源清单

cat >rbac.yaml <<'EOF'
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  labels:
    addonmanager.kubernetes.io/mode: Reconcile
    kubernetes.io/cluster-service: "true"
  name: grafana
rules:
- apiGroups:
  - "*"
  resources:
  - namespaces
  - deployments
  - pods
  verbs:
  - get
  - list
  - watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  labels:
    addonmanager.kubernetes.io/mode: Reconcile
    kubernetes.io/cluster-service: "true"
  name: grafana
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: grafana
subjects:
- kind: User
  name: k8s-node
EOF

1.1.3 准备dp资源清单

cat >dp.yaml <<'EOF'
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  labels:
    app: grafana
    name: grafana
  name: grafana
  namespace: infra
spec:
  progressDeadlineSeconds: 600
  replicas: 1
  revisionHistoryLimit: 7
  selector:
    matchLabels:
      name: grafana
  strategy:
    rollingUpdate:
      maxSurge: 1
      maxUnavailable: 1
    type: RollingUpdate
  template:
    metadata:
      labels:
        app: grafana
        name: grafana
    spec:
      containers:
      - name: grafana
        image: harbor.zq.com/infra/grafana:v5.4.2
        imagePullPolicy: IfNotPresent
        ports:
        - containerPort: 3000
          protocol: TCP
        volumeMounts:
        - mountPath: /var/lib/grafana
          name: data
      imagePullSecrets:
      - name: harbor
      securityContext:
        runAsUser: 0
      volumes:
      - nfs:
          server: hdss7-200
          path: /data/nfs-volume/grafana
        name: data
EOF

创建frafana数据目录

mkdir /data/nfs-volume/grafana

1.1.4 准备svc资源清单

cat >svc.yaml <<'EOF'
apiVersion: v1
kind: Service
metadata:
  name: grafana
  namespace: infra
spec:
  ports:
  - port: 3000
    protocol: TCP
    targetPort: 3000
  selector:
    app: grafana
EOF

1.1.5 准备ingress资源清单

cat >ingress.yaml <<'EOF'
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
  name: grafana
  namespace: infra
spec:
  rules:
  - host: grafana.zq.com
    http:
      paths:
      - path: /
        backend:
          serviceName: grafana
          servicePort: 3000
EOF

1.1.6 域名解析

vi /var/named/zq.com.zone
grafana            A    10.4.7.10
systemctl restart named

1.1.7 应用资源配置清单

kubectl apply -f http://k8s-yaml.zq.com/grafana/rbac.yaml
kubectl apply -f http://k8s-yaml.zq.com/grafana/dp.yaml
kubectl apply -f http://k8s-yaml.zq.com/grafana/svc.yaml
kubectl apply -f http://k8s-yaml.zq.com/grafana/ingress.yaml

1.2 使用grafana出图

1.2.1 浏览器访问验证

访问http://grafana.zq.com,默认用户名密码admin/admin

能成功访问表示安装成功

进入后立即修改管理员密码为admin123

1.2.2 进入容器安装插件

grafana确认启动好以后,需要进入grafana容器内部,安装以下插件

kubectl -n infra exec  -it grafana-d6588db94-xr4s6 /bin/bash
# 以下命令在容器内执行
grafana-cli plugins install grafana-kubernetes-app
grafana-cli plugins install grafana-clock-panel
grafana-cli plugins install grafana-piechart-panel
grafana-cli plugins install briangann-gauge-panel
grafana-cli plugins install natel-discrete-panel

1.2.3 配置数据源

添加数据源,依次点击:左侧锯齿图标-->add data source-->Prometheus

添加完成后重启grafana

kubectl -n infra delete pod grafana-7dd95b4c8d-nj5cx

1.2.4 添加K8S集群信息

启用K8S插件,依次点击:左侧锯齿图标-->Plugins-->kubernetes-->Enable

新建cluster,依次点击:左侧K8S图标-->New Cluster

1.2.5 查看k8s集群数据和图表

添加完需要稍等几分钟,在没有取到数据之前,会报http forbidden,没关系,等一会就好。大概2-5分钟。

点击Cluster Dashboard

2 配置alert告警插件

2.1 部署alert插件

2.1.1 准备docker镜像

docker pull docker.io/prom/alertmanager:v0.14.0
docker tag  23744b2d645c harbor.zq.com/infra/alertmanager:v0.14.0
docker push harbor.zq.com/infra/alertmanager:v0.14.0

准备目录

mkdir /data/k8s-yaml/alertmanager
cd /data/k8s-yaml/alertmanager

2.1.2 准备cm资源清单

cat >cm.yaml <<'EOF'
apiVersion: v1
kind: ConfigMap
metadata:
  name: alertmanager-config
  namespace: infra
data:
  config.yml: |-
    global:
      # 在没有报警的情况下声明为已解决的时间
      resolve_timeout: 5m
      # 配置邮件发送信息
      smtp_smarthost: 'smtp.163.com:25'
      smtp_from: 'xxx@163.com'
      smtp_auth_username: 'xxx@163.com'
      smtp_auth_password: 'xxxxxx'
      smtp_require_tls: false
    templates:   
      - '/etc/alertmanager/*.tmpl'
    # 所有报警信息进入后的根路由,用来设置报警的分发策略
    route:
      # 这里的标签列表是接收到报警信息后的重新分组标签,例如,接收到的报警信息里面有许多具有 cluster=A 和 alertname=LatncyHigh 这样的标签的报警信息将会批量被聚合到一个分组里面
      group_by: ['alertname', 'cluster']
      # 当一个新的报警分组被创建后,需要等待至少group_wait时间来初始化通知,这种方式可以确保您能有足够的时间为同一分组来获取多个警报,然后一起触发这个报警信息。
      group_wait: 30s
      # 当第一个报警发送后,等待'group_interval'时间来发送新的一组报警信息。
      group_interval: 5m
      # 如果一个报警信息已经发送成功了,等待'repeat_interval'时间来重新发送他们
      repeat_interval: 5m
      # 默认的receiver:如果一个报警没有被一个route匹配,则发送给默认的接收器
      receiver: default
    receivers:
    - name: 'default'
      email_configs:
      - to: 'xxxx@qq.com'
        send_resolved: true
        html: '{{ template "email.to.html" . }}' 
        headers: { Subject: " {{ .CommonLabels.instance }} {{ .CommonAnnotations.summary }}" }   
  email.tmpl: |
    {{ define "email.to.html" }}
    {{- if gt (len .Alerts.Firing) 0 -}}
    {{ range .Alerts }}
    告警程序: prometheus_alert <br>
    告警级别: {{ .Labels.severity }} <br>
    告警类型: {{ .Labels.alertname }} <br>
    故障主机: {{ .Labels.instance }} <br>
    告警主题: {{ .Annotations.summary }}  <br>
    触发时间: {{ .StartsAt.Format "2006-01-02 15:04:05" }} <br>
    {{ end }}{{ end -}}
    {{- if gt (len .Alerts.Resolved) 0 -}}
    {{ range .Alerts }}
    告警程序: prometheus_alert <br>
    告警级别: {{ .Labels.severity }} <br>
    告警类型: {{ .Labels.alertname }} <br>
    故障主机: {{ .Labels.instance }} <br>
    告警主题: {{ .Annotations.summary }} <br>
    触发时间: {{ .StartsAt.Format "2006-01-02 15:04:05" }} <br>
    恢复时间: {{ .EndsAt.Format "2006-01-02 15:04:05" }} <br>
    {{ end }}{{ end -}}
    {{- end }}
EOF

2.1.3 准备dp资源清单

cat >dp.yaml <<'EOF'
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: alertmanager
  namespace: infra
spec:
  replicas: 1
  selector:
    matchLabels:
      app: alertmanager
  template:
    metadata:
      labels:
        app: alertmanager
    spec:
      containers:
      - name: alertmanager
        image: harbor.zq.com/infra/alertmanager:v0.14.0
        args:
          - "--config.file=/etc/alertmanager/config.yml"
          - "--storage.path=/alertmanager"
        ports:
        - name: alertmanager
          containerPort: 9093
        volumeMounts:
        - name: alertmanager-cm
          mountPath: /etc/alertmanager
      volumes:
      - name: alertmanager-cm
        configMap:
          name: alertmanager-config
      imagePullSecrets:
      - name: harbor
EOF

2.1.4 准备svc资源清单

cat >svc.yaml <<'EOF'
apiVersion: v1
kind: Service
metadata:
  name: alertmanager
  namespace: infra
spec:
  selector: 
    app: alertmanager
  ports:
    - port: 80
      targetPort: 9093
EOF

2.1.5 应用资源配置清单

kubectl apply -f http://k8s-yaml.zq.com/alertmanager/cm.yaml
kubectl apply -f http://k8s-yaml.zq.com/alertmanager/dp.yaml
kubectl apply -f http://k8s-yaml.zq.com/alertmanager/svc.yaml

2.2 K8S使用alert报警

2.2.1 k8s创建基础报警规则文件

cat >/data/nfs-volume/prometheus/etc/rules.yml <<'EOF'
groups:
- name: hostStatsAlert
  rules:
  - alert: hostCpuUsageAlert
    expr: sum(avg without (cpu)(irate(node_cpu{mode!='idle'}[5m]))) by (instance) > 0.85
    for: 5m
    labels:
      severity: warning
    annotations:
      summary: "{{ $labels.instance }} CPU usage above 85% (current value: {{ $value }}%)"
  - alert: hostMemUsageAlert
    expr: (node_memory_MemTotal - node_memory_MemAvailable)/node_memory_MemTotal > 0.85
    for: 5m
    labels:
      severity: warning
    annotations:
      summary: "{{ $labels.instance }} MEM usage above 85% (current value: {{ $value }}%)"
  - alert: OutOfInodes
    expr: node_filesystem_free{fstype="overlay",mountpoint ="/"} / node_filesystem_size{fstype="overlay",mountpoint ="/"} * 100 < 10
    for: 5m
    labels:
      severity: warning
    annotations:
      summary: "Out of inodes (instance {{ $labels.instance }})"
      description: "Disk is almost running out of available inodes (< 10% left) (current value: {{ $value }})"
  - alert: OutOfDiskSpace
    expr: node_filesystem_free{fstype="overlay",mountpoint ="/rootfs"} / node_filesystem_size{fstype="overlay",mountpoint ="/rootfs"} * 100 < 10
    for: 5m
    labels:
      severity: warning
    annotations:
      summary: "Out of disk space (instance {{ $labels.instance }})"
      description: "Disk is almost full (< 10% left) (current value: {{ $value }})"
  - alert: UnusualNetworkThroughputIn
    expr: sum by (instance) (irate(node_network_receive_bytes[2m])) / 1024 / 1024 > 100
    for: 5m
    labels:
      severity: warning
    annotations:
      summary: "Unusual network throughput in (instance {{ $labels.instance }})"
      description: "Host network interfaces are probably receiving too much data (> 100 MB/s) (current value: {{ $value }})"
  - alert: UnusualNetworkThroughputOut
    expr: sum by (instance) (irate(node_network_transmit_bytes[2m])) / 1024 / 1024 > 100
    for: 5m
    labels:
      severity: warning
    annotations:
      summary: "Unusual network throughput out (instance {{ $labels.instance }})"
      description: "Host network interfaces are probably sending too much data (> 100 MB/s) (current value: {{ $value }})"
  - alert: UnusualDiskReadRate
    expr: sum by (instance) (irate(node_disk_bytes_read[2m])) / 1024 / 1024 > 50
    for: 5m
    labels:
      severity: warning
    annotations:
      summary: "Unusual disk read rate (instance {{ $labels.instance }})"
      description: "Disk is probably reading too much data (> 50 MB/s) (current value: {{ $value }})"
  - alert: UnusualDiskWriteRate
    expr: sum by (instance) (irate(node_disk_bytes_written[2m])) / 1024 / 1024 > 50
    for: 5m
    labels:
      severity: warning
    annotations:
      summary: "Unusual disk write rate (instance {{ $labels.instance }})"
      description: "Disk is probably writing too much data (> 50 MB/s) (current value: {{ $value }})"
  - alert: UnusualDiskReadLatency
    expr: rate(node_disk_read_time_ms[1m]) / rate(node_disk_reads_completed[1m]) > 100
    for: 5m
    labels:
      severity: warning
    annotations:
      summary: "Unusual disk read latency (instance {{ $labels.instance }})"
      description: "Disk latency is growing (read operations > 100ms) (current value: {{ $value }})"
  - alert: UnusualDiskWriteLatency
    expr: rate(node_disk_write_time_ms[1m]) / rate(node_disk_writes_completedl[1m]) > 100
    for: 5m
    labels:
      severity: warning
    annotations:
      summary: "Unusual disk write latency (instance {{ $labels.instance }})"
      description: "Disk latency is growing (write operations > 100ms) (current value: {{ $value }})"
- name: http_status
  rules:
  - alert: ProbeFailed
    expr: probe_success == 0
    for: 1m
    labels:
      severity: error
    annotations:
      summary: "Probe failed (instance {{ $labels.instance }})"
      description: "Probe failed (current value: {{ $value }})"
  - alert: StatusCode
    expr: probe_http_status_code <= 199 OR probe_http_status_code >= 400
    for: 1m
    labels:
      severity: error
    annotations:
      summary: "Status Code (instance {{ $labels.instance }})"
      description: "HTTP status code is not 200-399 (current value: {{ $value }})"
  - alert: SslCertificateWillExpireSoon
    expr: probe_ssl_earliest_cert_expiry - time() < 86400 * 30
    for: 5m
    labels:
      severity: warning
    annotations:
      summary: "SSL certificate will expire soon (instance {{ $labels.instance }})"
      description: "SSL certificate expires in 30 days (current value: {{ $value }})"
  - alert: SslCertificateHasExpired
    expr: probe_ssl_earliest_cert_expiry - time()  <= 0
    for: 5m
    labels:
      severity: error
    annotations:
      summary: "SSL certificate has expired (instance {{ $labels.instance }})"
      description: "SSL certificate has expired already (current value: {{ $value }})"
  - alert: BlackboxSlowPing
    expr: probe_icmp_duration_seconds > 2
    for: 5m
    labels:
      severity: warning
    annotations:
      summary: "Blackbox slow ping (instance {{ $labels.instance }})"
      description: "Blackbox ping took more than 2s (current value: {{ $value }})"
  - alert: BlackboxSlowRequests
    expr: probe_http_duration_seconds > 2 
    for: 5m
    labels:
      severity: warning
    annotations:
      summary: "Blackbox slow requests (instance {{ $labels.instance }})"
      description: "Blackbox request took more than 2s (current value: {{ $value }})"
  - alert: PodCpuUsagePercent
    expr: sum(sum(label_replace(irate(container_cpu_usage_seconds_total[1m]),"pod","$1","container_label_io_kubernetes_pod_name", "(.*)"))by(pod) / on(pod) group_right kube_pod_container_resource_limits_cpu_cores *100 )by(container,namespace,node,pod,severity) > 80
    for: 5m
    labels:
      severity: warning
    annotations:
      summary: "Pod cpu usage percent has exceeded 80% (current value: {{ $value }}%)"
EOF

2.2.2 K8S 更新配置

在prometheus配置文件中追加配置:

cat >>/data/nfs-volume/prometheus/etc/prometheus.yml <<'EOF'
alerting:
  alertmanagers:
    - static_configs:
        - targets: ["alertmanager"]
rule_files:
 - "/data/etc/rules.yml"
EOF

重载配置:

curl -X POST http://prometheus.zq.com/-/reload

image.png

以上这些就是我们的告警规则

2.2.3 测试告警

把test命名空间里的dubbo-demo-service给停掉

blackbox里信息已报错,alert里面项目变黄了

等到alert中项目变为红色的时候就开会发邮件告警

如果需要自己定制告警规则和告警内容,需要研究一下promql,自己修改配置文件。

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
5天前
|
缓存 负载均衡 JavaScript
探索微服务架构下的API网关模式
【10月更文挑战第37天】在微服务架构的海洋中,API网关犹如一座灯塔,指引着服务的航向。它不仅是客户端请求的集散地,更是后端微服务的守门人。本文将深入探讨API网关的设计哲学、核心功能以及它在微服务生态中扮演的角色,同时通过实际代码示例,揭示如何实现一个高效、可靠的API网关。
|
3天前
|
Cloud Native 安全 数据安全/隐私保护
云原生架构下的微服务治理与挑战####
随着云计算技术的飞速发展,云原生架构以其高效、灵活、可扩展的特性成为现代企业IT架构的首选。本文聚焦于云原生环境下的微服务治理问题,探讨其在促进业务敏捷性的同时所面临的挑战及应对策略。通过分析微服务拆分、服务间通信、故障隔离与恢复等关键环节,本文旨在为读者提供一个关于如何在云原生环境中有效实施微服务治理的全面视角,助力企业在数字化转型的道路上稳健前行。 ####
|
7天前
|
运维 Kubernetes Docker
利用Docker和Kubernetes构建微服务架构
利用Docker和Kubernetes构建微服务架构
|
4天前
|
Dubbo Java 应用服务中间件
服务架构的演进:从单体到微服务的探索之旅
随着企业业务的不断拓展和复杂度的提升,对软件系统架构的要求也日益严苛。传统的架构模式在应对现代业务场景时逐渐暴露出诸多局限性,于是服务架构开启了持续演变之路。从单体架构的简易便捷,到分布式架构的模块化解耦,再到微服务架构的精细化管理,企业对技术的选择变得至关重要,尤其是 Spring Cloud 和 Dubbo 等微服务技术的对比和应用,直接影响着项目的成败。 本篇文章会从服务架构的演进开始分析,探索从单体项目到微服务项目的演变过程。然后也会对目前常见的微服务技术进行对比,找到目前市面上所常用的技术给大家进行讲解。
14 1
服务架构的演进:从单体到微服务的探索之旅
|
3天前
|
Cloud Native 安全 API
云原生架构下的微服务治理策略与实践####
—透过云原生的棱镜,探索微服务架构下的挑战与应对之道 本文旨在探讨云原生环境下,微服务架构所面临的关键挑战及有效的治理策略。随着云计算技术的深入发展,越来越多的企业选择采用云原生架构来构建和部署其应用程序,以期获得更高的灵活性、可扩展性和效率。然而,微服务架构的复杂性也带来了服务发现、负载均衡、故障恢复等一系列治理难题。本文将深入分析这些问题,并提出一套基于云原生技术栈的微服务治理框架,包括服务网格的应用、API网关的集成、以及动态配置管理等关键方面,旨在为企业实现高效、稳定的微服务架构提供参考路径。 ####
20 5
|
5天前
|
监控 API 微服务
后端技术演进:从单体架构到微服务的转变
随着互联网应用的快速增长和用户需求的不断演化,传统单体架构已难以满足现代软件开发的需求。本文深入探讨了后端技术在面对复杂系统挑战时的演进路径,重点分析了从单体架构向微服务架构转变的过程、原因及优势。通过对比分析,揭示了微服务架构如何提高系统的可扩展性、灵活性和维护效率,同时指出了实施微服务时面临的挑战和最佳实践。
22 7
|
4天前
|
Kubernetes 负载均衡 Cloud Native
云原生架构下的微服务治理策略
随着云原生技术的不断成熟,微服务架构已成为现代应用开发的主流选择。本文探讨了在云原生环境下实施微服务治理的策略和方法,重点分析了服务发现、负载均衡、故障恢复和配置管理等关键技术点,以及如何利用Kubernetes等容器编排工具来优化微服务的部署和管理。文章旨在为开发者提供一套实用的微服务治理框架,帮助其在复杂的云环境中构建高效、可靠的分布式系统。
17 5
|
4天前
|
负载均衡 监控 Cloud Native
云原生架构下的微服务治理策略与实践####
在数字化转型浪潮中,企业纷纷拥抱云计算,而云原生架构作为其核心技术支撑,正引领着一场深刻的技术变革。本文聚焦于云原生环境下微服务架构的治理策略与实践,探讨如何通过精细化的服务管理、动态的流量调度、高效的故障恢复机制以及持续的监控优化,构建弹性、可靠且易于维护的分布式系统。我们将深入剖析微服务治理的核心要素,结合具体案例,揭示其在提升系统稳定性、扩展性和敏捷性方面的关键作用,为读者提供一套切实可行的云原生微服务治理指南。 ####
|
5天前
|
监控 持续交付 Docker
Docker 容器化部署在微服务架构中的应用有哪些?
Docker 容器化部署在微服务架构中的应用有哪些?
|
5天前
|
监控 持续交付 Docker
Docker容器化部署在微服务架构中的应用
Docker容器化部署在微服务架构中的应用

相关产品

  • 容器服务Kubernetes版