iclr 2020 | Geom-GCN:几何图神经网络

简介: iclr 2020 | Geom-GCN:几何图神经网络

image.png

今天给大家介绍吉林大学计算机科学与技术学院杨博老师团队在ICLR2020的一篇论文,该研究针对MPNN现存的一些问题提出了一种新的图神经网络的几何聚合方式,其核心思想是:图上的聚合可以受益于图的连续空间,实验结果表明该研究具有显著效果。


1


背景


消息传递神经网络(MPNN),例如GNN,ChebNet,GG-NN,GCN等,对于基于图的学习具有强大的功能,应用范围从大脑网络到在线社交网络等领域。尽管现有的MPNN已成功应用于各种场景,但MPNN聚合器的两个基本弱点限制了它们表示图结构数据的能力:(1)丢失节点与其邻居节点的结构信息(这也是GCN存在的一个普遍性问题,很多学者都无法确定结构信息在图卷积中具体的作用到底是什么),现有的MPNN将邻域中的所有信息视为一个集合,而在进行聚合时会丢失节点的结构信息,如果不对此类结构信息进行建模,则现有的MPNN无法区分某些非同构图;(2)无法在异配图中捕获节点的大范围依赖关系,MPNN仅汇总来自附近节点的消息。具有这种聚合的MPNN倾向于学习图中近端节点的相似表示。这意味着它们可能是节点同形成立的分类,但可能不适用于其中节点同形不成立的分解图。例如一个分解图,其中相同类别的节点显示出很高的结构相似性但彼此相距很远。在这种情况下,MPNN的表示能力可能会受到很大限制,因为它们无法捕获来自遥远但信息量大的节点的重要特征。


作者针对以上两个缺点提出一种几何聚合方式(geometric aggregation scheme)来克服以上两个缺点。这种方式的核心思想在于图上的聚合可以受益于图的连续空间。与现有的MPNNs相比,这个结构抽取了Grpah中更多的结构信息,可以通过将原有的远节点映射为latent space中的相邻节点来传递信息。作者还提出了在GCN中执行该方案的实现方法,称为Geom-GCN,目的是在图上实现transductive learning(直推式学习)。作者分别在欧几里得(Euclidean)和双曲嵌入(hyperbolic embedded)空间中设计具有特定几何关系的结构邻域。针对具体应用,使用不同的embedding方法将graph映射到合适的latent space之中,并保留了合适的graph topology模型,实验证明Geom-GCN在很多数据集上达到了最先进的性能。


综上,该文章贡献是三方面的:i)针对图神经网络提出了一种新颖的几何聚合方案,该方案既可在图空间又可在潜空间工作,以克服上述两个缺点。ii)提出了一种用于图的跨语言学习的方案Geom-GCN的实现;iii)通过在几个具有挑战性的基准上与最新方法进行广泛的比较来验证和分析Geom-GCN。


2


模型(Geometric aggregation scheme)


如下图1-1所示,该scheme由三部分组成,其中node embedding是A1-A2, structural neighborhood是B1-B2,而bi-level aggregation是C。接下来分别介绍这个三个部分。

image.png

其中是几何关系的集合。


(3)Bi-level aggregation: 根据结构化的邻居,提出了一个针对GNN的bi-level aggravation来更新节点的hidden features。bi-level aggravation包括两个聚合函数,这个函数既可以有效抽取邻居节点中的结构信息,也可以确保graph中的置换不变性。记为l-th layer节点的hidden feature,根据下面公式更新。

image.png

其中,Low-level aggregation p:聚合节点在某个关系下的邻居的信息.这里用一个虚拟节点的概念来表示。High-level aggregation q:聚合节点在多种关系下的邻居的信息。Non-linear transform: 非线性变化。


3


如何克服两个缺点


为了克服第一个缺点,该方案通过利用隐空间中节点之间的几何关系,然后使用双层聚合有效地提取信息,从而对结构信息进行显式建模。通过映射到latent space来解决捕捉邻居节点的问题,通过bi-level aggregation来传递信息。对于第二个缺点,使用两种方法,(1)特征相似但是相距很远的节点可以在latent映射成临近节点,从而解决了长距离信息传递的问题,不过这对embedding方法提出了较高的要求,要求这些映射方法能够区分相似节点与不同节点。(2)结构信息使得中心节点能够区分不同的邻居节点。因而在whole graph来传递邻近节点的信息。


4


Gemo-GCN


这里是将上一节中提出的很抽象的Low-level aggregation p,和High-level aggregation q以及关系映射函数给出具体的形式。关系映射函数考虑了4种不同的位置关系。如下所示

image.png

5

实验

该文章主要和GCN和GAT进行对比,数据集如下表4-1所示:

表4-1 Dataset

image.png

image.png

网络同质性越强越大。实验方法对验证集采用超参数搜索方式,为了公平起见每种方法的搜索空间大小都是相同的。搜索参数包括隐藏单元数量,初始学习率,权重衰减和dropout。将Gemo-GCN,GCN和GAT的层数固定为2,使用Adam优化器,Gemo-GCN,GCN激活函数用ReLU函数,GAT激活函数用ELU函数。然后在10个随机分割的最终测试集上评估。对于所有的graph数据集,将每个类别的节点随机分为60%,20%,20%进行训练,验证和测试。


实验准确率如下表4-2所示(整体效果不错):


表4-2 Result

image.png

6


总结


文章解决了图上现有的消息传递神经网络的两个主要缺点,即判别结构的丢失和长期依赖。通过图嵌入将离散图映射到连续的几何空间,换言之,利用卷积原理:在有意义的空间上进行空间聚合,因此,该方法从图形的嵌入空间中提取或“恢复”了嵌入式空间丢失的信息。提出了一种通用的几何聚合方案,并用几种特定的Geom-GCN实现了该方案,并且实验证明了与最新技术相比具有明显的优势。在未来的工作中,我们将探索选择合适的嵌入方法,不仅取决于输入图,而且取决于目标应用程序,例如社交联系网络上的流行病动态预测。


目录
相关文章
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
Transformer 能代替图神经网络吗?
Transformer模型的革新性在于其自注意力机制,广泛应用于多种任务,包括非原始设计领域。近期研究专注于Transformer的推理能力,特别是在图神经网络(GNN)上下文中。
146 5
|
6月前
|
机器学习/深度学习 搜索推荐 知识图谱
图神经网络加持,突破传统推荐系统局限!北大港大联合提出SelfGNN:有效降低信息过载与数据噪声影响
【7月更文挑战第22天】北大港大联手打造SelfGNN,一种结合图神经网络与自监督学习的推荐系统,专攻信息过载及数据噪声难题。SelfGNN通过短期图捕获实时用户兴趣,利用自增强学习提升模型鲁棒性,实现多时间尺度动态行为建模,大幅优化推荐准确度与时效性。经四大真实数据集测试,SelfGNN在准确性和抗噪能力上超越现有模型。尽管如此,高计算复杂度及对图构建质量的依赖仍是待克服挑战。[详细论文](https://arxiv.org/abs/2405.20878)。
93 5
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
图神经网络是一类用于处理图结构数据的神经网络。与传统的深度学习模型(如卷积神经网络CNN和循环神经网络RNN)不同,
图神经网络是一类用于处理图结构数据的神经网络。与传统的深度学习模型(如卷积神经网络CNN和循环神经网络RNN)不同,
|
6月前
|
机器学习/深度学习 编解码 数据可视化
图神经网络版本的Kolmogorov Arnold(KAN)代码实现和效果对比
目前我们看到有很多使用KAN替代MLP的实验,但是目前来说对于图神经网络来说还没有类似的实验,今天我们就来使用KAN创建一个图神经网络Graph Kolmogorov Arnold(GKAN),来测试下KAN是否可以在图神经网络方面有所作为。
211 0
|
8月前
|
机器学习/深度学习 自然语言处理 搜索推荐
【传知代码】图神经网络长对话理解-论文复现
在ACL2023会议上发表的论文《使用带有辅助跨模态交互的关系时态图神经网络进行对话理解》提出了一种新方法,名为correct,用于多模态情感识别。correct框架通过全局和局部上下文信息捕捉对话情感,同时有效处理跨模态交互和时间依赖。模型利用图神经网络结构,通过构建图来表示对话中的交互和时间关系,提高了情感预测的准确性。在IEMOCAP和CMU-MOSEI数据集上的实验结果证明了correct的有效性。源码和更多细节可在文章链接提供的附件中获取。
103 4
【传知代码】图神经网络长对话理解-论文复现
|
7月前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现深度学习模型:图神经网络(GNN)
使用Python实现深度学习模型:图神经网络(GNN)
400 1
|
7月前
|
机器学习/深度学习 搜索推荐 PyTorch
【机器学习】图神经网络:深度解析图神经网络的基本构成和原理以及关键技术
【机器学习】图神经网络:深度解析图神经网络的基本构成和原理以及关键技术
1404 2
|
8月前
|
机器学习/深度学习 JSON PyTorch
图神经网络入门示例:使用PyTorch Geometric 进行节点分类
本文介绍了如何使用PyTorch处理同构图数据进行节点分类。首先,数据集来自Facebook Large Page-Page Network,包含22,470个页面,分为四类,具有不同大小的特征向量。为训练神经网络,需创建PyTorch Data对象,涉及读取CSV和JSON文件,处理不一致的特征向量大小并进行归一化。接着,加载边数据以构建图。通过`Data`对象创建同构图,之后数据被分为70%训练集和30%测试集。训练了两种模型:MLP和GCN。GCN在测试集上实现了80%的准确率,优于MLP的46%,展示了利用图信息的优势。
128 1
|
8月前
|
机器学习/深度学习 算法
ICLR 2024 Oral:用巧妙的传送技巧,让神经网络的训练更加高效
【5月更文挑战第21天】ICLR 2024 Oral 提出了一种名为“传送”的新方法,利用参数对称性提升神经网络训练效率。该方法通过参数变换加速收敛,改善泛化能力,减少了训练所需的计算资源和时间。研究显示,传送能将模型移到不同曲率的极小值点,可能有助于泛化。论文还探讨了将传送应用于元学习等优化算法的潜力,但对传送加速优化的确切机制理解尚不深入,且实际应用效果有待更多验证。[论文链接](https://openreview.net/forum?id=L0r0GphlIL)
73 2
|
8月前
|
机器学习/深度学习 数据挖掘 算法框架/工具
想要了解图或图神经网络?没有比看论文更好的方式,面试阿里国际站运营一般会问什么
想要了解图或图神经网络?没有比看论文更好的方式,面试阿里国际站运营一般会问什么