为什么需要实体识别
普通的工具如hanlp,htp,不能识别特定领域的专有名词,所以需要实体识别的算法。下面就以医疗专业为例子来谈一下医疗专业的命名实体识别。
标注
- 人工标注
- 机器标注bootstrapping,例如给文中的水果打标签,给定“苹果”,会自动把文中其他的“桃子”,“李子”等自动标注出来(百度)
- 医疗专业中标注比如:比如检测手段“头 ct”,“腔隙性脑梗死”是疾病,他们的关系是:检测手段证明了疾病
- 先边界识别 然后进行类别判定
例如医疗需要识别的命名实体的类型有疾病、疾病诊断分类、症状、检查、治疗在这五类以及疾病和症状的修饰信息。;对应英文分别是(Disease)(Disease Type) (Symptom) (Test) (Treatment)
关系抽取研究主要关注这六类实体关系的抽取: 治疗和疾病之间的关系, 比如治疗施 加于疾病; 治疗和症状之间的关系, 比如为缓解症状而施加的治疗; 检查和疾病之间的关系, 比如检查证实疾 病; 检查和症状之间的关系, 比如检查发现症状; 疾病和症状之间的关系, 比如疾病导致症状; 疾病和疾病诊 断分类之间的关系, 该关系表示疾病的进展程度。
关系抽取研究主要关注这六类实体关系的抽取: 治疗和疾病之间的关系, 比如治疗施 加于疾病; 治疗和症状之间的关系, 比如为缓解症状而施加的治疗; 检查和疾病之间的关系, 比如检查证实疾 病; 检查和症状之间的关系, 比如检查发现症状; 疾病和症状之间的关系, 比如疾病导致症状; 疾病和疾病诊 断分类之间的关系, 该关系表示疾病的进展程度。
- 修饰
分别是否认(absent)、非患者本人(family)、当前的(present)、有条件的 (conditional)、可能的(possible)、待证实的(hypothetical)、偶有的(occasional)
中文电子病历命名实体和实体关系标注体系及语料库构建 9 在是否发生患者本人这个方面有两个修饰: (1)否认: 患者主动否认、或肯定不发生于患者身上。 比如: 各瓣膜区未闻及病理性杂音。 全腹无压痛、反跳痛及肌紧张。 腹壁静脉曲张: 无 (2)非患者本人: 发生于患者家属, 该种修饰可能和“否认”重叠, 若发生此种情况, 选择否认。 比如: 其父母均患有糖尿病 在发生于患者本人的确定程度这个方面有五个修饰: (3)当前的: 肯定发生或正在发生于患者本人的疾病和症状。 比如: 头晕、呕吐伴右下肢无力。 自诉有冠心病史。 头CT示:双侧多发腔梗。 (4)有条件的: 当前不一定发生, 在某种条件具备的情况下, 才发生。 比如: 该患者于入院前3个月开始出现阵发性胸闷、心慌, 常于饮酒后出现。 (5)可能的: 不确定当前会发生, 需要进一步的证据才能确定。 比如: 不排除缺血性疾病。 右肺中下叶考虑创伤性湿肺。 临床初步诊断: 脑梗死、高血压病、糖尿病。 (6)待证实的: 当前不会发生, 但预期会发生。 比如: 手术一周后会有局部瘙痒 多在皮疹出现后1~4周左右出现血尿和 (或) 蛋白尿。 (7)偶有的: 指症状或者疾病当前不经常出现, 或者出现的频率较低。 比如: 病程中患者走路不稳, 偶有头晕。 大便偶有一过性发白。 时有胸闷气短。
- 标注
3.1疾病 DIS,DISEASE 疾病必须是能够治疗的,其语义范围包括:疾病或者综合征、受伤或中毒、先天性畸形、病毒细菌、病理功能、细胞或分子功能障碍、获得性异常、解剖异常、肿瘤进程、精神或行为障碍等。 1。1。1 疾病诊断分型 DT, DISEASE TYPE 疾病的具体分类,表示疾病的进展程度,疾病诊断分类一般出现在诊断里。如: 1)失代偿期 DT 2)III期DT 3)II型 DT 3.2 症状 症状是能够被改善或治愈的,并且能够被否定词修饰,为疾病的表现。包括患者向医生陈述的不适感觉(症状)和医生观察到的(体征)或者检查结果,如: 3.2.1患者向医生陈述的不适感觉(症状) SYM,SYMPTOM 1)疼痛时伴有右下肢活动受限。(“疼痛“ 、”右下肢活动受限”); 2)伴活动后心慌气短。(“心慌”、“气短”) 3.2.2医生观察到的(体征)ST 1)双肺听诊可闻及少量痰鸣音。(“痰鸣音”) 2)自带胸片示左下肺症病变。(“左下肺症病变”) 3)双肺听诊无著征。(“著征”) 3.3 检查 TES,TEST 检查是为了发现、证实疾病或症状,找到更多关于疾病或症状的信息而施加给患者的检查项目,包括:化验过程,诊断过程等。如: 1)头CT显示脑实质内高密度灶。(“CT”) 2)血压最高达到180/130mmHg。(“血压”) 3)双肺听诊无著征。(“听诊”) 4)自带胸片示左下肺症病变。(“胸片”) 3.4 治疗 治疗是能够治疗疾病或者缓解症状而施加给患者的手段,包括手术、药品、措施等。本标注语义类型包括:药物、手术。如: 3.4.1药品 DRU,DRUG 1)奥扎格雪、脑蛋白水解物等静点 (药物“奥扎格雪”和“脑蛋白水解物”)。 3.4.2手术 SUR,SURGERY 1)4年前行胆囊切除术。(手术“胆囊切除术”) 2)鼻内镜下行双筛、双上颌窦。(手术“鼻内镜”) 3.4.3措施(非手术,非药品的治疗) PRE,precaution 3.5实体修饰词标注 3.5.1 否认词(AT,,absent)标注: 各瓣膜区未闻及病理性杂音 全腹无压痛、反跳痛及肌紧张 3.5.2条件词(CL,conditional)标注: 在某种条件具备的情况下才发生的词。 比如:该患者于入院前3个月开始出现阵发性胸闷、心慌,常于饮酒后出现。 再如:吃红薯后血糖升高 3.5.3既往信息词(PT,past) 明确表示患者过去有过的治疗史或疾病症状,比如: 有多年心脏病史。 该患者于入院前3个月开始出现阵发性胸闷、心慌,常于饮酒后出现。 3.5.4时间标注统一标为TE 该患者于入院前3个月开始出现阵发性胸闷、心慌,常于饮酒后出现。 3.5.5!!可能性词: 不确定当前会发生,需要进一步的证据确认的词。如: 不排除缺血性疾病。/右肺中下叶考虑创伤性湿肺 待证实词:当前不会发生,但预期会发生。比如: 手术一周后会有局部瘙痒 3.5.6程度词标注(AM,AMOUNT),非量化的数量描述词,如大小、多少、程度(明显等)等 双肺听诊可闻及少量痰鸣音。 3.5.7解剖位置 器官(REG,REGION) 部位词(ORG,ORGEN) 3.5.8频率词 (FW,Frequency Word) 患者走路不稳,偶有头晕。时有胸闷气短。 反复胸闷,憋气,持续时间长短不等。
标注格式: 突发 AM 头晕 SYM 伴 O 恶心 SYM 呕吐 SYM 3小时 TE
分类标签id化
用BIESO来表示边界,大致可以分为如下标签,分别表示(开始,中间,结束,单个,其他) 也可以用BIO进行边界
对数据进行标注
分为训练集和测试集
设置配置参数
{ "model_type": "idcnn",特征抽取的模型 "num_chars": 3538,语料库的实体数目 "char_dim": 100,每个字的维度,embedding,把3538维度进行降维 "num_tags": 51,标记的种类数目 "seg_dim": 20,把边界BIOES增维,变成20维,上采样,所以每个字是120维度,使得边界信息更加丰富 "lstm_dim": 100,120维度,卷积之后的通道数 "batch_size": 20, "emb_file": "/usr/zxy/NER_IDCNN_CRF/data/vec.txt", "clip": 5,防止梯度爆炸 "dropout_keep": 0.5, "optimizer": "adam", "lr": 0.001, "tag_schema": "iobes", "pre_emb": true,预序列嵌入,embeding文件 "zeros": true, "lower": false字母小写 }