GraphDTA | 基于图卷积网络预测药物-靶标结合亲和力

简介: GraphDTA | 基于图卷积网络预测药物-靶标结合亲和力

image.png

1. 研究背景

现有的高通量筛选实验用于确定药物和靶标之间的生物活性是一个昂贵费时的步骤。因此,基于已经在临床实验中测量的相互作用,使用统计学和机器学习模型来估计新的药物-靶标的相互作用的强度是重要的替代方案。澳大利亚Deakin大学的Svetha Venkatesh课题组提出了GraphDTA,一种基于图神经网络的药物-靶标结合亲和力的预测方法。


2. 相关工作


2.1药物表征


发明了SMILES表示计算机可读的分子,开发了多个有效的应用程序,包括快速检索和子结构搜索。根据SMILES可以计算药物描述符用作预测亲和力的特征。可以将SMILES视为字符串使用自然语言处理(NLP)技术来强化药物,也可以视为1D表示,输入卷积神经网络(CNN)以学习模型来预测亲和性。

image.png

化学结构到SMILES字符串


SMILES可通过rdkit开源软件生成graph的形式,然后通过图卷积网络表示学习得到药物特征向量。


图形卷积网络(GCN)最流行的深度学习方法可用于药物-靶标结合亲和力的预测,GCN是卷积神经网络(CNN)到图结构数据的推广。GCN可分为两大类:基于谱的方法和基于空间的方法。基于谱的方法中,图首先在谱域中表示,然后在该域中定义卷积运算。相反,基于空间的方法直接在图空间域上执行学习算法。学习过程包括邻域公式,然后通过聚合来自其邻居节点的信息,然后是子采样任务来更新节点的信息。


2.2药物-靶标结合亲和力的预测


2.2.1亲和力相似度(SimBoost)


药物-靶标结合亲和力预测的任务可以被认为是协同过滤问题(CF)。对于药物- 靶标结合预测中可获得的亲和力通常是稀疏的。伴随着药物之间以及靶标之间的相似性,以在SimBoost中建立特征,这些特征是梯度增强机器的输入,以预测未知药物-靶标对的结合亲和力。

版权声明:本文为CSDN博主「DrugAI」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

原文链接:https://blog.csdn.net/u012325865/article/details/105683719化学结构到SMILES字符串


SMILES可通过rdkit开源软件生成graph的形式,然后通过图卷积网络表示学习得到药物特征向量。


图形卷积网络(GCN)最流行的深度学习方法可用于药物-靶标结合亲和力的预测,GCN是卷积神经网络(CNN)到图结构数据的推广。GCN可分为两大类:基于谱的方法和基于空间的方法。基于谱的方法中,图首先在谱域中表示,然后在该域中定义卷积运算。相反,基于空间的方法直接在图空间域上执行学习算法。学习过程包括邻域公式,然后通过聚合来自其邻居节点的信息,然后是子采样任务来更新节点的信息。


2.2药物-靶标结合亲和力的预测


2.2.1亲和力相似度(SimBoost)


药物-靶标结合亲和力预测的任务可以被认为是协同过滤问题(CF)。对于药物- 靶标结合预测中可获得的亲和力通常是稀疏的。伴随着药物之间以及靶标之间的相似性,以在SimBoost中建立特征,这些特征是梯度增强机器的输入,以预测未知药物-靶标对的结合亲和力。

image.png

SimBoost算法预测过程


2.2.2基于内核(KronRLS)


可以从其他来源建立相似性而不是训练数据中的亲和力。鉴于问题是预测n种药物和m种靶标的亲和力,它们将有n * m种组合,并且核心的大小为(n * m)平方。为了加速模型训练,Cichonska等人建议使用KronRLS。


为了计算内核,可以使用任何相似性度量。药物的核心是基于Tanimoto的相似性构建的; 而对于目标,Smith-Waterman评分用作蛋白质序列的相似性度量。


2.2.3深度学习


提供药物(SMILES)和蛋白质(序列)的1D表示时,深度学习可能是预测亲和力的可能方法。

image.png

图中,input_1和input_2分别是药物和靶标。因此使用1D卷积和池的层来捕获输入中的潜在模式。然后将它们连接起来,通过Dropout的正则层发送,最后用训练亲和力回归。

3. 方法(GraphDTA)


通过将药物的特征带入药物-靶标相互作用的模型,研究人员提出了一种新的深度学习模型GraphDTA,用于药物-靶标亲和力预测。GraphDTA中基于药物的SMILES作为输入,通过开源软件RDKit构建药物的分子图并提取原子特征,将该图结构数据输入到GCN层中学习药物图特征表示中的潜在模式。然后将药物-靶标亲和力(DTA)预测问题转换为回归任务,其中输入是一对蛋白质和药物表示,并且输出是反映该对亲和力结合得分的连续值。


3.1化合物的图表示


化合物可描述为原子间相互作用的图。因此,以图表示的形式处理输入化合物,并随后在图上应用学习算法可以很好地适合任务。为此,对于每个输入化合物(SMILES),研究人员构建了反映化合物内原子之间相互作用的相应分子图。


3.2深入学习分子图


化合物以图的形式表示,问题是采用能够有效地从图结构化数据中学习的算法。最近在计算机视觉、语音识别和自然语言处理中的深度卷积神经网络的成功导致了将卷积运算扩展到图结构的想法。已经提出了许多工作来处理将CNN概括为图形的两个主要挑战,即在数据点未被布置为欧几里德网格的图中形成感受域,以及用于对图进行下采样的池化操作。

image.png

GraphDTA模型


研究人员提出了一种新的DTA预测模型,该模型基于图神经网络和传统CNN的组合。模型采用两个输入:SMILES和蛋白质序列,并且并行地向前馈送它们以学习每个的表示向量,然后将两个潜在的特征向量连接起来并经历几个密集层,以回归层来估计亲和力值。

研究人员为了评估基于图神经网络方法的有效性,采用了多种图神经网络模型。包括GCN、GAT、GIN和GAT-GCN。通过修改图神经网络的模式来测试模型性能。

image.png

4. 实验与结果

研究人员主要通过对比非深度学习模型与比较流行的深度学习模型,通过测量计算一致性指数CI(指示预测值与实际值的一致性)与均方误差MSE这两个指标来表示模型的好坏。为了使实验结果具有比较性,分别在Davis与Kiba数据集对模型进行测量。

image.png

Davis数据集模型测量结果

image.png

KIBA数据集模型测量结果


两种数据集中的测量结果都表示在基于GAT-GCN结合的图表示模型中预测性能最佳。


5. 结论


本项工作中,研究人员提出了一种计算药物-靶标结合亲和力的新方法,称为GraphDTA;旨在降低药物开发的难度,减少发现新药物靶标相互作用在时间与成本上的花费,缩短药物开发周期。该模型使用由SMILES数据重构得来的二维图结构数据,能够表达药物的较完整信息,因此该方法能够获得较好的预测性能。

Code availability


https://github.com/thinng/GraphDTA


目录
相关文章
|
14天前
|
机器学习/深度学习 计算机视觉 Python
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力本文提出了一种简单且高效的卷积神经网络(ConvNets)注意力模块——SimAM。与现有模块不同,SimAM通过优化能量函数推断特征图的3D注意力权重,无需添加额外参数。SimAM基于空间抑制理论设计,通过简单的解决方案实现高效计算,提升卷积神经网络的表征能力。代码已在Pytorch-SimAM开源。
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络:从理论到实践
【10月更文挑战第35天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,在图像识别和视频分析等领域展现出了惊人的潜力。本文将深入浅出地介绍CNN的工作原理,并结合实际代码示例,带领读者从零开始构建一个简单的CNN模型,探索其在图像分类任务中的应用。通过本文,读者不仅能够理解CNN背后的数学原理,还能学会如何利用现代深度学习框架实现自己的CNN模型。
|
7天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
17天前
|
机器学习/深度学习 监控 自动驾驶
卷积神经网络有什么应用场景
【10月更文挑战第23天】卷积神经网络有什么应用场景
18 2
|
17天前
|
机器学习/深度学习 自然语言处理 算法
什么是卷积神经网络
【10月更文挑战第23天】什么是卷积神经网络
24 1
|
20天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
65 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
22天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第21天】本文旨在深入探讨深度学习领域的核心组成部分——卷积神经网络(CNN)。通过分析CNN的基本结构、工作原理以及在图像识别、语音处理等领域的广泛应用,我们不仅能够理解其背后的技术原理,还能把握其在现实世界问题解决中的强大能力。文章将用浅显的语言和生动的例子带领读者一步步走进CNN的世界,揭示这一技术如何改变我们的生活和工作方式。
|
29天前
|
机器学习/深度学习 人工智能 监控
深入理解深度学习中的卷积神经网络(CNN):从原理到实践
【10月更文挑战第14天】深入理解深度学习中的卷积神经网络(CNN):从原理到实践
82 1
|
8天前
|
机器学习/深度学习 人工智能 自动驾驶
深入解析深度学习中的卷积神经网络(CNN)
深入解析深度学习中的卷积神经网络(CNN)
22 0
|
11天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第32天】本文将介绍深度学习中的一个重要分支——卷积神经网络(CNN),以及其在图像识别领域的应用。我们将通过一个简单的代码示例,展示如何使用Python和TensorFlow库构建一个基本的CNN模型,并对其进行训练和测试。

热门文章

最新文章