表格存储快速上手-宽表模型

本文涉及的产品
表格存储 Tablestore,50G 2个月
简介: 宽表模型是(Wide column) Tablestore 采用的几个模型之一。宽表模型是 Schema-free 的,创建一张宽表仅需要定义 1-4个主键 结构,无需定义属性列结构,在插入数据时添加任意多个属性列即可。主键列表中第一个主键将作为分区键,按照分区键值的范围将数据负载均衡到多个分区 (Partition) 中。

小提示:快速体验表格存储 Tablestore CLI 工具前,请您先阅读《表格存储快速上手准备》


模型简介

宽表模型是(Wide column) Tablestore 采用的几个模型之一。宽表模型是 Schema-free 的,创建一张宽表仅需要定义 1-4个主键 结构,无需定义属性列结构,在插入数据时添加任意多个属性列即可。主键列表中第一个主键将作为分区键,按照分区键值的范围将数据负载均衡到多个分区 (Partition) 中。

以订单场景为例,一张订单数据表order的表主键为_id,包含了若干个属性列,例如: cName(消费者姓名),pType(产品类型),sld(售货员ID),total_Price(订单总价格)等等。对应的宽表数据结构如下图所示

WideColumnTable.png

订单表数据结构

下面将带您快速体验使用 Tablestore CLI 工具如何实现对上述订单表order的基本操作。


宽表操作

  • 创建数据表。执行 create 命令创建一张订单表,表名为 order。
create -t order --pk '[{"c":"id","t":"string"}]'


  • 选择数据表。执行 use --wc 命令选择操作 order 表。
use --wc -t order


  • 数据导入。这里提供两种方式导入数据,二选一即可。
  • 自定义数据,执行 put命令单行写入。示例中写入了5条订单数据。
put --pk '["0000000f470ef0f548b925ceffe1a7e3"]' --attr '[{"c":"pBrand","v":"oppo"},{"c":"pPrice","v":2498.99},{"c":"totalPrice","v":1599.0},{"c":"sName","v":"售郑七"},{"c":"pId","v":"p0004001"},{"c":"oId","v":"o0057022192"},{"c":"hasPaid","v":false},{"c":"sId","v":"s0007"},{"c":"orderTime","v":1518510583886,"isint":true},{"c":"pName","v":"oppo K1"},{"c":"cName","v":"消郑七"},{"c":"pType","v":"手机"},{"c":"pCount","v":1,"isint":true},{"c":"cId","v":"c0017"}]'
put --pk '["000000114d884ca1dbd6b9a58e8d0d94"]' --attr '[{"c":"pBrand","v":"vivo"},{"c":"pPrice","v":1599.0},{"c":"payTime","v":1509615334404,"isint":true},{"c":"totalPrice","v":2498.99},{"c":"sName","v":"售周五"},{"c":"pId","v":"p0003004"},{"c":"oId","v":"o0039248410"},{"c":"hasPaid","v":true},{"c":"sId","v":"s0015"},{"c":"orderTime","v":1509614885965,"isint":true},{"c":"pName","v":"vivo x21"},{"c":"cName","v":"消冯八"},{"c":"pType","v":"手机"},{"c":"pCount","v":1,"isint":true},{"c":"cId","v":"c0018"}]'
put --pk '["0000004dbeb751e77cf0b3f0da90b6ee"]' --attr '[{"c":"pBrand","v":"小米"},{"c":"pPrice","v":2002.0},{"c":"payTime","v":1491560220742,"isint":true},{"c":"totalPrice","v":6006.0},{"c":"sName","v":"售楚十"},{"c":"pId","v":"p0005001"},{"c":"oId","v":"o0003171350"},{"c":"hasPaid","v":true},{"c":"sId","v":"s0021"},{"c":"orderTime","v":1491560154808,"isint":true},{"c":"pName","v":"小米 pad"},{"c":"cName","v":"消赵一"},{"c":"pType","v":"平板"},{"c":"pCount","v":3,"isint":true},{"c":"cId","v":"c0022"}]'
put --pk '["00000057f33ff1d0a2d00ff6dbf4c411"]' --attr '[{"c":"pBrand","v":"oppo"},{"c":"pPrice","v":3199.98},{"c":"totalPrice","v":3199.98},{"c":"sName","v":"售周五"},{"c":"pId","v":"p0004003"},{"c":"oId","v":"o0036473830"},{"c":"hasPaid","v":false},{"c":"sId","v":"s0015"},{"c":"orderTime","v":1508226047439,"isint":true},{"c":"pName","v":"oppo R17"},{"c":"cName","v":"消吴六"},{"c":"pType","v":"手机"},{"c":"pCount","v":1,"isint":true},{"c":"cId","v":"d0006"}]'
put --pk '["0000005be2b43dd134eae18ebe079774"]' --attr '[{"c":"pBrand","v":"小米"},{"c":"pPrice","v":2299.21},{"c":"totalPrice","v":6897.63},{"c":"sName","v":"售郑七"},{"c":"pId","v":"p0005003"},{"c":"oId","v":"o0035062633"},{"c":"hasPaid","v":false},{"c":"sId","v":"s0007"},{"c":"orderTime","v":1507519847532,"isint":true},{"c":"pName","v":"小米 6"},{"c":"cName","v":"消周五"},{"c":"pType","v":"手机"},{"c":"pCount","v":3,"isint":true},{"c":"cId","v":"c0015"}]'


  • 下载样例数据压缩包到本地并解压。执行 import 命令批量导入。样例数据中共包含100万条订单数据,可通过 import -l 参数自定义导入行数(1000万行内免费使用),示例中导入了5万条订单数据。yourFilePath表示样例数据压缩包解压后的路径。


导入命令

import -i yourFilePath --ignore_version -l 50000

日志输出

Current speed is: 10000 rows/s. Total succeed count 10000, failed count 0.
Current speed is: 12600 rows/s. Total succeed count 22600, failed count 0.
Current speed is: 17200 rows/s. Total succeed count 39800, failed count 0.
Import finished, total count is 50000, failed 0 rows.


  • 执行 get命令按照 order_Md5 和 order_id 查询一行数据。
get --pk '["0000005be2b43dd134eae18ebe079774"]'

输出

+----------------------------------+-------+--------+---------+-------------+---------------+--------+--------+----------+--------+---------+-------+-------+--------+------------+
| id                               | cId   | cName  | hasPaid | oId         | orderTime     | pBrand | pCount | pId      | pName  | pPrice  | pType | sId   | sName  | totalPrice |
+----------------------------------+-------+--------+---------+-------------+---------------+--------+--------+----------+--------+---------+-------+-------+--------+------------+
| 0000005be2b43dd134eae18ebe079774 | c0015 | 消周五  | false   | o0035062633 | 1507519847532 | 小米   | 3       | p0005003 | 小米 6 | 2299.21 | 手机   | s0017 | 售郑七 | 6897.63     |
+----------------------------------+-------+--------+---------+-------------+---------------+--------+--------+----------+--------+---------+-------+-------+--------+------------+


  • 执行 scan 命令查询多行数据。示例中查询了5条订单数据。
scan -l 5

输出

+----------------------------------+-------+--------+---------+-------------+--------------------+--------+--------+----------+----------+---------+-------+-------+--------+------------+--------------------+
| id                               | cId   | cName  | hasPaid | oId         | orderTime          | pBrand | pCount | pId      | pName    | pPrice  | pType | sId   | sName  | totalPrice | payTime            |
+----------------------------------+-------+--------+---------+-------------+--------------------+--------+--------+----------+----------+---------+-------+-------+--------+------------+--------------------+
| 0000000f470ef0f548b925ceffe1a7e3 | c0017 | 消郑七  | false   | o0057022192 | 1.518510583886e+12 | oppo   | 1      | p0004001 | oppo K1  | 2498.99 | 手机   | s0007 | 售郑七 | 1599        |                    |
+----------------------------------+-------+--------+---------+-------------+--------------------+--------+--------+----------+----------+---------+-------+-------+--------+------------+--------------------+
| 000000114d884ca1dbd6b9a58e8d0d94 | c0018 | 消冯八  | true    | o0039248410 | 1.509614885965e+12 | vivo   | 1      | p0003004 | vivo x21 | 1599    | 手机   | s0015 | 售周五 | 2498.99     | 1.509615334404e+12 |
+----------------------------------+-------+--------+---------+-------------+--------------------+--------+--------+----------+----------+---------+-------+-------+--------+------------+--------------------+
| 0000004dbeb751e77cf0b3f0da90b6ee | c0022 | 消赵一  | true    | o0003171350 | 1.491560154808e+12 | 小米    | 3      | p0005001 | 小米 pad | 2002    | 平板   | s0021 | 售楚十 | 6006        | 1.491560220742e+12 |
+----------------------------------+-------+--------+---------+-------------+--------------------+--------+--------+----------+----------+---------+-------+-------+--------+------------+--------------------+
| 00000057f33ff1d0a2d00ff6dbf4c411 | d0006 | 消吴六  | false   | o0036473830 | 1508226047439      | oppo   | 1      | p0004003 | oppo R17 | 3199.98 | 手机   | s0015 | 售周五 | 3199.98     |                    |
+----------------------------------+-------+--------+---------+-------------+--------------------+--------+--------+----------+----------+---------+-------+-------+--------+------------+--------------------+
| 0000005be2b43dd134eae18ebe079774 | c0015 | 消周五  | false   | o0035062633 | 1507519847532      | 小米    | 3      | p0005003 | 小米 6   | 2299.21 | 手机   | s0017 | 售郑七 | 6897.63     |                    |
+----------------------------------+-------+--------+---------+-------------+--------------------+--------+--------+----------+----------+---------+-------+-------+--------+------------+--------------------+


SQL模式

  • 执行 sql 命令进入 SQL 命令行模式,可通过 sql 语句查询数据表。
sql
  • 建立 order 数据表的映射表。可执行 describe `order` 查看订单表 order 的映射表是否已创建,若已创建则跳过此步骤。
CREATETABLE `order` (    `id` VARCHAR(1024),    `cId` MEDIUMTEXT,    `cName` MEDIUMTEXT,    `hasPaid` BOOL,    `oId` MEDIUMTEXT,    `orderTime` BIGINT(20),    `pBrand` MEDIUMTEXT,    `pCount` BIGINT(20),    `pId` MEDIUMTEXT,    `pName` MEDIUMTEXT,    `pPrice` DOUBLE,    `pType` MEDIUMTEXT,    `payTime` BIGINT(20),    `sId` MEDIUMTEXT,    `sName` MEDIUMTEXT,    `totalPrice` DOUBLE,    PRIMARY KEY(`id`));


示例一:查询10条售货员姓名为“售周五”的订单,按照订单总金额升序排列。
select*from `order` 
where sName ="售周五"orderby totalPrice asclimit10;

输出

+----------------------------------+-------+--------+---------+-------------+---------------+--------+--------+----------+---------+--------+-------+---------------+-------+--------+------------+
| id                               | cId   | cName  | hasPaid | oId         | orderTime     | pBrand | pCount | pId      | pName   | pPrice | pType | payTime       | sId   | sName  | totalPrice |
+----------------------------------+-------+--------+---------+-------------+---------------+--------+--------+----------+---------+--------+-------+---------------+-------+--------+------------+
| 000d63a8240fd5798ae533fab9627fbd | c0018 | 消冯八  | true    | o0067305260 | 1523656305350 | 小米    | 1      | p0005004 | 红米 5s  | 499.01 | 手机  | 1523656890642 | s0005 | 售周五  | 499.01     |
+----------------------------------+-------+--------+---------+-------------+---------------+--------+--------+----------+---------+--------+-------+---------------+-------+--------+------------+
| 000b836ed542c958f8f1e77edfbb7d77 | c0022 | 消赵一  | false   | o0013980680 | 1496968800141 | 小米    | 1      | p0005004 | 红米 5s  | 499.01 | 手机  | null          | s0015 | 售周五  | 499.01     |
+----------------------------------+-------+--------+---------+-------------+---------------+--------+--------+----------+---------+--------+-------+---------------+-------+--------+------------+
| 000bdf5a862e44e6055861cd82048b68 | d0006 | 消吴六  | true    | o0086746505 | 1533387384921 | 小米    | 1      | p0005004 | 红米 5s  | 499.01 | 手机  | 1533387459564 | s0015 | 售周五  | 499.01     |
+----------------------------------+-------+--------+---------+-------------+---------------+--------+--------+----------+---------+--------+-------+---------------+-------+--------+------------+
| 0005843fd4595d992dd656a6dfda3956 | d0016 | 消吴六  | false   | o0048417764 | 1514203877923 | 小米    | 1      | p0005004 | 红米 5s  | 499.01 | 手机  | null          | s0005 | 售周五  | 499.01     |
+----------------------------------+-------+--------+---------+-------------+---------------+--------+--------+----------+---------+--------+-------+---------------+-------+--------+------------+
| 000604f8ffb6e3b5198da05a804d9738 | c0018 | 消冯八  | true    | o0022405938 | 1501185776343 | 小米    | 1      | p0005004 | 红米 5s  | 499.01 | 手机  | 1501186194040 | s0015 | 售周五  | 499.01     |
+----------------------------------+-------+--------+---------+-------------+---------------+--------+--------+----------+---------+--------+-------+---------------+-------+--------+------------+
| 000281b2afb0e19b750dca4477b6c5c0 | c0018 | 消冯八  | false   | o0002835300 | 1491391860673 | 小米    | 1      | p0005004 | 红米 5s  | 499.01 | 手机  | null          | s0015 | 售周五  | 499.01     |
+----------------------------------+-------+--------+---------+-------------+---------------+--------+--------+----------+---------+--------+-------+---------------+-------+--------+------------+
| 0002bf3bfeff3296d72e13a95fe503e6 | c0015 | 消周五  | false   | o0022955766 | 1501461219307 | 小米    | 1      | p0005004 | 红米 5s  | 499.01 | 手机  | null          | s0015 | 售周五  | 499.01     |
+----------------------------------+-------+--------+---------+-------------+---------------+--------+--------+----------+--------- +--------+-------+---------------+-------+--------+------------+
| 00035d195c8d7a1273b9d7a603b97bf5 | c0022 | 消赵一  | false   | o0036716450 | 1508347328100 | 小米    | 1      | p0005004 | 红米 5s  | 499.01 | 手机  | null          | s0015 | 售周五  | 499.01     |
+----------------------------------+-------+--------+---------+-------------+---------------+--------+--------+----------+---------+--------+-------+---------------+-------+--------+------------+
| 0000f560b62779285e86947f8e8d0e4c | c0008 | 消冯八  | false   | o0000826505 | 1490386088808 | 小米    | 1      | p0005004 | 红米 5s  | 499.01 | 手机  | null          | s0015 | 售周五  | 499.01     |
+----------------------------------+-------+--------+---------+-------------+---------------+--------+--------+----------+---------+--------+-------+---------------+-------+--------+------------+
| 00026613c323ad57e57a87730f316f94 | c0018 | 消冯八  | false   | o0094575530 | 1537306505439 | 小米    | 1      | p0005004 | 红米 5s  | 499.01 | 手机  | null          | s0015 | 售周五  | 499.01     |
+----------------------------------+-------+--------+---------+-------------+---------------+--------+--------+----------+---------+--------+-------+---------------+-------+--------+------------+


示例二:统计产品类型为“手机”的订单条数
selectcount(*)from `order`
where pType ="手机";

输出

+----------+
| count(*) |
+----------+
| 33915    |
+----------+


示例3:统计产品个数大于1的订单条数
selectcount(*)from `order`
where pCount >1;

输出

+----------+
| count(*) |
+----------+
| 33481    |
+----------+


退出 sql 模式

exit;

退出 cli 工具

exit


高级特性

多元索引提供了丰富的查询方式和数据聚合能力,例如全文检索、多列排序、分组、求和等等。多元索引在SQL查询加速方面也有着很好的特性,下面将再导入一百万条订单数据(这里不作展示,参考上文导入),使用SQL查询。

执行 create_search_index 命令创建多元索引。

注意:创建多元索引后会按照表中数据量大小产生少量费用,删除索引后停止计费。多元索引创建后需要等待一段时间,数据表中的数据将以异步的方式自动同步到索引中。

create_search_index-torder-norder_index{
"IndexSetting": null,
"FieldSchemas": [{
"FieldName": "id",
"FieldType": "KEYWORD",
"Index": true,
"EnableSortAndAgg": true,
"Store": true     }, {
"FieldName": "cId",
"FieldType": "KEYWORD",
"Index": true,
"EnableSortAndAgg": true,
"Store": true     }, {
"FieldName": "cName",
"FieldType": "KEYWORD",
"Index": true,
"EnableSortAndAgg": true,
"Store": true     }, {
"FieldName": "hasPaid",
"FieldType": "BOOLEAN",
"Index": true,
"EnableSortAndAgg": true,
"Store": true     }, {
"FieldName": "oId",
"FieldType": "KEYWORD",
"Index": true,
"EnableSortAndAgg": true,
"Store": true     }, {
"FieldName": "orderTime",
"FieldType": "LONG",
"Index": true,
"EnableSortAndAgg": true,
"Store": true     }, {
"FieldName": "pBrand",
"FieldType": "KEYWORD",
"Index": true,
"EnableSortAndAgg": true,
"Store": true     }, {
"FieldName": "pCount",
"FieldType": "LONG",
"Index": true,
"EnableSortAndAgg": true,
"Store": true     }, {
"FieldName": "pId",
"FieldType": "KEYWORD",
"Index": true,
"EnableSortAndAgg": true,
"Store": true     }, {
"FieldName": "pName",
"FieldType": "TEXT",
"Index": true,
"EnableSortAndAgg": false,
"Store": true     }, {
"FieldName": "pPrice",
"FieldType": "DOUBLE",
"Index": true,
"EnableSortAndAgg": true,
"Store": true     }, {
"FieldName": "pType",
"FieldType": "KEYWORD",
"Index": true,
"EnableSortAndAgg": true,
"Store": true     }, {
"FieldName": "sId",
"FieldType": "KEYWORD",
"Index": true,
"EnableSortAndAgg": true,
"Store": true     }, {
"FieldName": "sName",
"FieldType": "KEYWORD",
"Index": true,
"EnableSortAndAgg": true,
"Store": true     }, {
"FieldName": "totalPrice",
"FieldType": "DOUBLE",
"Index": true,
"EnableSortAndAgg": true,
"Store": true     }]
 }


示例一:统计所有订单数量
selectcount(*)from `order`;

输出

+----------+
| count(*) |
+----------+
| 1000000  |
+----------+


示例二:统计每个品牌的订单数量
select pBrand,count(*)from `order` 
groupby pBrand;

输出

+--------+----------+
| pBrand | count(*) |
+--------+----------+
| 联想   | 304252   |
+--------+----------+
| oppo   | 242513   |
+--------+----------+
| vivo   | 162539   |
+--------+----------+
| 小米   | 194543   |
+--------+----------+
| 苹果   | 96153    |
+--------+----------+
示例三:检索所有产品名包含 “iphone” 并且消费者姓名为“消赵一”并且已经支付的订单,返回前面10条订单。
select*from `order` 
where payTime isnotnulland cName ="消赵一"and pName like"%iphone%"limit10;

输出

+----------------------------------+-------+--------+---------+-------------+---------------+--------+--------+----------+-----------+--------+-------+---------------+-------+--------+------------+
| id                               | cId   | cName  | hasPaid | oId         | orderTime     | pBrand | pCount | pId      | pName     | pPrice | pType | payTime       | sId   | sName  | totalPrice |
+----------------------------------+-------+--------+---------+-------------+---------------+--------+--------+----------+-----------+--------+-------+---------------+-------+--------+------------+
| 000031205a858155c4cce6d464642086 | c0022 | 消赵一  | true    | o0035222739 | 1507599844791 | 苹果    | 3      | p0001005 | iphone X  | 8989   | 手机  | 1507600392490 | s0021 | 售楚十  | 26967      |
+----------------------------------+-------+--------+---------+-------------+---------------+--------+--------+----------+-----------+--------+-------+---------------+-------+--------+------------+
| 00003ee288bbb3dab82e25276f63c954 | c0011 | 消赵一  | true    | o0001755823 | 1490851467185 | 苹果    | 2      | p0001003 | iphone 7  | 7979   | 手机  | 1490851509652 | s0007 | 售郑七  | 15958      |
+----------------------------------+-------+--------+---------+-------------+---------------+--------+--------+----------+-----------+--------+-------+---------------+-------+--------+------------+
| 00004fecfa2d58cd9b22a31e6875f320 | c0021 | 消赵一  | true    | o0039692760 | 1509836893267 | 苹果    | 2      | p0001004 | iphone 7p | 8080   | 手机  | 1509837292095 | s0019 | 售陈九  | 16160      |
+----------------------------------+-------+--------+---------+-------------+---------------+--------+--------+----------+-----------+--------+-------+---------------+-------+--------+------------+
| 000055fe36693b07ca1ae2a7803df3f4 | c0021 | 消赵一  | true    | o0028497546 | 1504234632705 | 苹果    | 1      | p0001002 | iphone 6p | 7070   | 手机  | 1504234649071 | s0017 | 售郑七  | 7070       |
+----------------------------------+-------+--------+---------+-------------+---------------+--------+--------+----------+-----------+--------+-------+---------------+-------+--------+------------+
| 00005db15274cc3f128a9721ff2efb53 | c0021 | 消赵一  | true    | o0025763782 | 1502866718223 | 苹果    | 1      | p0001005 | iphone X  | 8989   | 手机  | 1502867272695 | s0011 | 售赵一  | 8989       |
+----------------------------------+-------+--------+---------+-------------+---------------+--------+--------+----------+-----------+--------+-------+---------------+-------+--------+------------+
| 0000d0716e693fed72555f8e4a4537b3 | c0021 | 消赵一  | true    | o0097412099 | 1538725936411 | 苹果    | 1      | p0001002 | iphone 6p | 7070   | 手机  | 1538726211705 | s0018 | 售冯八  | 7070       |
+----------------------------------+-------+--------+---------+-------------+---------------+--------+--------+----------+-----------+--------+-------+---------------+-------+--------+------------+
| 0000d4f73247516c1d7aad99721c610f | c0022 | 消赵一  | true    | o0061144390 | 1520573840081 | 苹果    | 1      | p0001004 | iphone 7p | 8080   | 手机  | 1520574004218 | s0021 | 售楚十  | 8080       |
+----------------------------------+-------+--------+---------+-------------+---------------+--------+--------+----------+-----------+--------+-------+---------------+-------+--------+------------+
| 0000fe74dbccc478a3db91fadd06ffeb | c0021 | 消赵一  | true    | o0073210619 | 1526613119777 | 苹果    | 1      | p0001003 | iphone 7  | 7979   | 手机  | 1526613369627 | s0011 | 售赵一  | 7979       |
+----------------------------------+-------+--------+---------+-------------+---------------+--------+--------+----------+-----------+--------+-------+---------------+-------+--------+------------+
| 0001daac925913db5a995dca78701f60 | c0021 | 消赵一  | true    | o0092439401 | 1536237095817 | 苹果    | 2      | p0001005 | iphone X  | 8989   | 手机  | 1536237549982 | s0016 | 售吴六  | 17978      |
+----------------------------------+-------+--------+---------+-------------+---------------+--------+--------+----------+-----------+--------+-------+---------------+-------+--------+------------+
| 0002341af23476b87bdc3599826c0a96 | c0023 | 消赵一  | true    | o0089564235 | 1534798174984 | 苹果    | 3      | p0001004 | iphone 7p | 8080   | 手机  | 1534798468123 | s0014 | 售李四  | 24240      |
+----------------------------------+-------+--------+---------+-------------+---------------+--------+--------+----------+-----------+--------+-------+---------------+-------+--------+------------+


相关实践学习
消息队列+Serverless+Tablestore:实现高弹性的电商订单系统
基于消息队列以及函数计算,快速部署一个高弹性的商品订单系统,能够应对抢购场景下的高并发情况。
阿里云表格存储使用教程
表格存储(Table Store)是构建在阿里云飞天分布式系统之上的分布式NoSQL数据存储服务,根据99.99%的高可用以及11个9的数据可靠性的标准设计。表格存储通过数据分片和负载均衡技术,实现数据规模与访问并发上的无缝扩展,提供海量结构化数据的存储和实时访问。 产品详情:https://www.aliyun.com/product/ots
目录
相关文章
|
存储 消息中间件 NoSQL
亿级消息系统的核心存储:Tablestore发布Timeline 2.0模型
互联网快速发展的今天,社交类应用、消息类功能大行其道,占据了大量网络流量。大至钉钉、微信、微博、知乎,小至各类App的推送通知,消息类功能几乎成为所有应用的标配。根据场景特点,我们可以将消息类场景归纳成三大类:IM(钉钉、微信)、Feed流(微博、知乎)以及常规消息队列。
16017 0
|
存储 搜索推荐 NoSQL
带你读《云存储应用白皮书》之37:3. 表格存储在推荐系统中的应用
带你读《云存储应用白皮书》之37:3. 表格存储在推荐系统中的应用
194 0
|
SQL 存储 监控
表格存储物联网时序模型介绍
表格存储的时序模型是针对时间序列数据的特点进行设计,适用于物联网设备监控、设备采集数据、机器监控数据等场景。自21年9月公测,经过长时间打磨,功能已经正式商业化。本文简单介绍表格存储时序模型优势、特点以及数据建模建议。
830 15
表格存储物联网时序模型介绍
|
存储 传感器 运维
基于 Tablestore 时序模型构建车联网数据存储
背景最近几年,物联网得到了飞速的发展。在车联网、设备监控、网络监控、快递跟踪等物联网典型场景下,海量监控数据、轨迹数据、传感器数据被生产数来。这些数据产生频率高、数据量大、严重依赖采集时间,是典型的时序数据。传统的数据库是无法应对这种高写入的海量实时数据的,需要使用能够支持时序模型的时序数据库对这些数据进行储存和分析。表格存储时序模型是专门针对时序数据特点,为物联网、车联网等场景设计的。本文基于车
509 0
基于 Tablestore 时序模型构建车联网数据存储
|
SQL 存储 监控
表格存储快速上手-时序模型
表格存储的时序模型是针对时间序列数据的特点进行设计,适用于物联网设备监控、设备采集数据、机器监控数据等场景。以车联网场景为例展示车辆状态表的时序模型操作。
393 0
表格存储快速上手-时序模型
|
物联网 数据库 时序数据库
【直播预告】阿里技术专家亚帆:物联网数据运营之路-时序数据库物联网模型设计探究
本次技术分享中,我们将向大家讲解各个模型在业务场景中的应用和简单的多值模型使用方法。
6479 0
|
存储 索引
表格存储根据多元索引查询条件直接更新数据
表格存储是否可以根据多元索引查询条件直接更新数据?
114 3
|
SQL NoSQL 数据可视化
玩转Tablestore:使用Grafana快速展示时序数据
Grafana 是一款采用 go 语言编写的开源应用,主要用于大规模指标数据的可视化展现,是网络架构和应用分析中最流行的时序数据展示工具,可以通过将采集的数据查询然后可视化的展示,实现报警通知;Grafana拥有丰富的数据源,官方支持以下数据源:Graphite,Elasticsearch,InfluxDB,Prometheus,Cloudwatch,MySQ
1756 0
玩转Tablestore:使用Grafana快速展示时序数据
|
5月前
|
DataWorks NoSQL 关系型数据库
DataWorks产品使用合集之如何从Tablestore同步数据到MySQL
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
7月前
|
分布式计算 DataWorks API
DataWorks常见问题之按指定条件物理删除OTS中的数据失败如何解决
DataWorks是阿里云提供的一站式大数据开发与管理平台,支持数据集成、数据开发、数据治理等功能;在本汇总中,我们梳理了DataWorks产品在使用过程中经常遇到的问题及解答,以助用户在数据处理和分析工作中提高效率,降低难度。