预测分析:R语言实现2.8 小结

简介:

2.8 小结


在本章,我们学习了线性回归,这是一种让我们能在有监督学习环境下拟合线性模型的方法,在这种环境下,我们有一些输入特征和一个数值型的输出。简单线性回归是对只有一个输入特征的情况的命名,而多元线性回归则描述了具有多个输入特征的情况。线性回归是解决回归问题很常用的第一步骤。它假定输出是输入特征的线性加权组合,再加上一个无法化简、符合正态分布、具有0均值和常数方差的误差项。这种模型也假设特征是相互独立的。线性回归的性能可以通过一组不同的衡量指标来进行评价,从更标准的MSE到诸如R2 统计量等其他指标。我们探讨了几种模型诊断和显著性检验方法,它们用于检测从不成立的假设到离群值等问题。最后,我们还讨论了如何用逐步回归进行特征选择,以及利用岭回归和lasso进行正则化。

线性回归模型具有多种优势,包括快速和开销小的参数计算过程,以及易于解释和推断的模型,这是因为它具有形式简单的优点。有很多检验方法可以用来诊断关于模型拟合的问题,并对系数的显著性进行假设检验。总体来说,可以认为它是低方差的一种方法,因为它对于数据中的小误差比较健壮(robust)。就其不足之处而言,因为它作出了非常严格的假设,尤其是输出函数在模型参数里必须是线性的,所以它就会引入很高程度的偏误,对于比较复杂或高度非线性的一般函数,这种方法往往就表现不佳。此外,我们也看到了,当输入特征数量变得很多时,我们就不能依赖于系数的显著性检验。当我们在一个高维特征空间里工作时,这个事实再加上特征之间的独立性假设,就会使线性回归成为相对较差的一种选择。

在下一章,我们会学习逻辑回归,它是一种用于分类问题的重要方法。

 

相关文章
|
7天前
|
数据采集 机器学习/深度学习 数据可视化
探索大数据分析的无限可能:R语言的应用与实践
探索大数据分析的无限可能:R语言的应用与实践
49 9
|
6月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
5月前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
93 3
|
10月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
10月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
6月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
7月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
7月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
7月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
|
7月前
|
机器学习/深度学习 数据采集
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分类分析预测房价及交叉验证
上述介绍仅为简要概述,每个模型在实施时都需要仔细调整与优化。为了实现高度精确的预测,模型选择与调参是至关重要的步骤,并且交叉验证是提升模型稳健性的有效途径。在真实世界的房价预测问题中,可能还需要结合地域经济、市场趋势等宏观因素进行综合分析。
125 3