Flink实战(三) - 编程范式及核心概念(二)

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: Flink实战(三) - 编程范式及核心概念(二)

4 延迟执行

所有Flink程序都是延迟执行:当执行程序的main方法时,数据加载和转换不会立即执行。而是创建每个操作并将其添加到程序的计划中。

当执行环境上的execute()调用显式触发执行时,实际执行操作。

程序是在本地执行还是在集群上执行取决于执行环境的类型


延迟执行使我们可以构建Flink作为一个整体计划单元执行的复杂程序,进行内部的优化。

5 指定keys

1.png

1.png上述程序中的这些数据如何确定呢?

某些转换(join,coGroup,keyBy,groupBy)要求在元素集合上定义key

其他转换(Reduce,GroupReduce,Aggregate,Windows)允许数据在应用之前在key上分组。


  • DataSet分组为
DataSet<...> input = // [...]
DataSet<...> reduced = input
  .groupBy(/*define key here*/)
  .reduceGroup(/*do something*/);

虽然可以使用DataStream指定key

DataStream<...> input = // [...]
DataStream<...> windowed = input
  .keyBy(/*define key here*/)
  .window(/*window specification*/);

Flink的数据模型不基于键值对。 因此,无需将数据集类型物理打包到键和值中。 键是“虚拟的”:它们被定义为实际数据上的函数,以指导分组操作符。


注意:在下面的讨论中,将使用DataStream API和keyBy。 对于DataSet API,只需要用DataSet和groupBy替换。


5.1 定义元组的键

源码

image.png

  • 即 :按给定的键位置(对于元组/数组类型)对DataStream的元素进行分组,以与分组运算符(如分组缩减或分组聚合)一起使用。

最简单的情况是在元组的一个或多个字段上对元组进行分组:

val input: DataStream[(Int, String, Long)] = // [...]
val keyed = input.keyBy(0)

元组在第一个字段(整数类型)上分组。

val input: DataSet[(Int, String, Long)] = // [...]
val grouped = input.groupBy(0,1)

在这里,我们将元组分组在由第一个和第二个字段组成的复合键上。

关于嵌套元组的注释:如果你有一个带有嵌套元组的DataStream,例如:

DataStream<Tuple3<Tuple2<Integer, Float>,String,Long>> ds;

指定keyBy(0)将使系统使用完整的Tuple2作为键(以Integer和Float为键)。 如果要“导航”到嵌套的Tuple2中,则必须使用下面解释的字段表达式键。

5.2 指定key的字段表达式

可以使用基于字符串的字段表达式来引用嵌套字段,并定义用于分组,排序,连接或coGrouping的键。

字段表达式可以非常轻松地选择(嵌套)复合类型中的字段,例如Tuple和POJO类型。

我们有一个WC POJO,其中包含两个字段“word”和“count”。


Java版本代码

image.png

Scala版本代码

image.png

要按字段分组,我们只需将其名称传递给keyBy()函数。

// some ordinary POJO (Plain old Java Object)
class WC(var word: String, var count: Int) {
  def this() { this("", 0L) }
}
val words: DataStream[WC] = // [...]
val wordCounts = words.keyBy("word").window(/*window specification*/)
// or, as a case class, which is less typing
case class WC(word: String, count: Int)
val words: DataStream[WC] = // [...]
val wordCounts = words.keyBy("word").window(/*window specification*/)

5.2.1 字段表达式语法:

按字段名称选择POJO字段

例如,“user”指的是POJO类型的“user”字段


通过1偏移字段名称或0偏移字段索引选择元组字段

例如,“_ 1”和“5”分别表示Scala Tuple类型的第一个和第六个字段。


可以在POJO和Tuples中选择嵌套字段

例如,“user.zip”指的是POJO的“zip”字段,其存储在POJO类型的“user”字段中。 支持任意嵌套和混合POJO和元组,例如“_2.user.zip”或“user._4.1.zip”。


可以使用“_”通配符表达式选择完整类型

这也适用于非Tuple或POJO类型的类型。

5.2.2 字段表达示例

class WC(var complex: ComplexNestedClass, var count: Int) {
  def this() { this(null, 0) }
}
class ComplexNestedClass(
    var someNumber: Int,
    someFloat: Float,
    word: (Long, Long, String),
    hadoopCitizen: IntWritable) {
  def this() { this(0, 0, (0, 0, ""), new IntWritable(0)) }
}

这些是上面示例代码的有效字段表达式:

  • “count”:WC类中的count字段。
  • “complex”:递归选择POJO类型ComplexNestedClass的字段复合体的所有字段。
  • “complex.word._3”:选择嵌套Tuple3的最后一个字段。
  • “complex.hadoopCitizen”:选择Hadoop IntWritable类型。

5.3 指定key的key选择器函数

定义键的另一种方法是“键选择器”功能。 键选择器函数将单个元素作为输入并返回元素的键。 key可以是任何类型,并且可以从确定性计算中导出。


以下示例显示了一个键选择器函数,它只返回一个对象的字段:


Java

image.png

Scala

image.png





相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
目录
相关文章
|
6月前
|
消息中间件 运维 Kafka
直播预告|Kafka+Flink双引擎实战:手把手带你搭建分布式实时分析平台!
在数字化转型中,企业亟需从海量数据中快速提取价值并转化为业务增长动力。5月15日19:00-21:00,阿里云三位技术专家将讲解Kafka与Flink的强强联合方案,帮助企业零门槛构建分布式实时分析平台。此组合广泛应用于实时风控、用户行为追踪等场景,具备高吞吐、弹性扩缩容及亚秒级响应优势。直播适合初学者、开发者和数据工程师,参与还有机会领取定制好礼!扫描海报二维码或点击链接预约直播:[https://developer.aliyun.com/live/255088](https://developer.aliyun.com/live/255088)
505 35
直播预告|Kafka+Flink双引擎实战:手把手带你搭建分布式实时分析平台!
|
6月前
|
消息中间件 运维 Kafka
直播预告|Kafka+Flink 双引擎实战:手把手带你搭建分布式实时分析平台!
直播预告|Kafka+Flink 双引擎实战:手把手带你搭建分布式实时分析平台!
224 12
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
863 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
消息中间件 分布式计算 大数据
大数据-123 - Flink 并行度 相关概念 全局、作业、算子、Slot并行度 Flink并行度设置与测试
大数据-123 - Flink 并行度 相关概念 全局、作业、算子、Slot并行度 Flink并行度设置与测试
522 0
|
8月前
|
消息中间件 JSON 数据库
探索Flink动态CEP:杭州银行的实战案例
探索Flink动态CEP:杭州银行的实战案例
306 5
|
11月前
|
消息中间件 JSON 数据库
探索Flink动态CEP:杭州银行的实战案例
本文由杭州银行大数据工程师唐占峰、欧阳武林撰写,介绍Flink动态CEP的定义、应用场景、技术实现及使用方式。Flink动态CEP是基于Flink的复杂事件处理库,支持在不重启服务的情况下动态更新规则,适应快速变化的业务需求。文章详细阐述了其在反洗钱、反欺诈和实时营销等金融领域的应用,并展示了某金融机构的实际应用案例。通过动态CEP,用户可以实时调整规则,提高系统的灵活性和响应速度,降低维护成本。文中还提供了具体的代码示例和技术细节,帮助读者理解和使用Flink动态CEP。
1379 2
探索Flink动态CEP:杭州银行的实战案例
|
消息中间件 NoSQL Kafka
大数据-116 - Flink DataStream Sink 原理、概念、常见Sink类型 配置与使用 附带案例1:消费Kafka写到Redis
大数据-116 - Flink DataStream Sink 原理、概念、常见Sink类型 配置与使用 附带案例1:消费Kafka写到Redis
839 0
|
API C# Shell
WPF与Windows Shell完美融合:深入解析文件系统操作技巧——从基本文件管理到高级Shell功能调用,全面掌握WPF中的文件处理艺术
【8月更文挑战第31天】Windows Presentation Foundation (WPF) 是 .NET Framework 的关键组件,用于构建 Windows 桌面应用程序。WPF 提供了丰富的功能来创建美观且功能强大的用户界面。本文通过问题解答的形式,探讨了如何在 WPF 应用中集成 Windows Shell 功能,并通过具体示例代码展示了文件系统的操作方法,包括列出目录下的所有文件、创建和删除文件、移动和复制文件以及打开文件夹或文件等。
370 0
|
分布式计算 Java Hadoop
Flink实战(三) - 编程范式及核心概念(四)
Flink实战(三) - 编程范式及核心概念(四)
218 0
Flink实战(三) - 编程范式及核心概念(四)
|
分布式计算 Java API
Flink实战(三) - 编程范式及核心概念(三)
Flink实战(三) - 编程范式及核心概念(三)
192 0
Flink实战(三) - 编程范式及核心概念(三)

热门文章

最新文章

下一篇
oss云网关配置