春节在家不再无聊,这份2019 AI研究进展回顾陪伴你

简介: 新春快乐!2019 年刚刚过去,去年有哪些最重要的研究是必须要记住的?本文将带你一并回顾

2019 年可以说是「预训练模型」流行起来的一年。自 BERT 引发潮流以来,相关方法的研究不仅获得了 EMNLP 大会最佳论文等奖项,更是在 NLP、甚至图像领域里引领了风潮。


去年也有很多游戏 AI 取得了超越人类的水平。人工智能不仅已经玩转德州扑克、星际争霸和 Dota2 这样复杂的游戏,还获得了 Nature、Science 等顶级期刊的肯定。


机器之心整理了去年全年在人工智能、量子计算等领域里最为热门的七项研究让我们以时间的顺序来看:


OpenAI 发布 15 亿参数量的通用语言模型 GPT-2


第一个重磅研究出现在 2 月,继发布刷新 11 项 NLP 任务记录的 3 亿参数量语言模型 BERT 之后,谷歌 OpenAI 于 2019 年 2 月再次推出了一种更为强大的模型,而这次的模型参数量达到了 15 亿。这是一种大型无监督语言模型,能够生产连贯的文本段落,在许多语言建模基准上取得了 SOTA 表现。此外,在没有任务特定训练的情况下,该模型能够做到初步的阅读理解、机器翻译、问答和自动摘要。


该模型名为 GPT-2,它是基于 Transformer 的大型语言模型,包含 15 亿参数、在一个 800 万网页数据集上训练而成。训练 GPT-2 有一个简单的目标:给定一个文本中前面的所有单词,预测下一个单词。GPT-2 是对 GPT 模型的直接扩展,在超出 10 倍的数据量上进行训练,参数量也多出了 10 倍。



GPT-2 展示了一系列普适而强大的能力,包括生成当前最佳质量的条件合成文本,其中我们可以将输入馈送到模型并生成非常长的连贯文本。此外,GPT-2 优于在特定领域(如维基百科、新闻或书籍)上训练的其它语言模型,而且还不需要使用这些特定领域的训练数据。在知识问答、阅读理解、自动摘要和翻译等任务上,GPT-2 可以从原始文本开始学习,无需特定任务的训练数据。虽然目前这些下游任务还远不能达到当前最优水平,但 GPT-2 表明如果有足够的(未标注)数据和计算力,各种下游任务都可以从无监督技术中获益。


微信图片_20211203005043.jpgGPT-2 在 Winograd Schema、LAMBADA 和其他语言建模任务中达到了当前最佳性能。



最后,基于大型通用语言模型可能会产生巨大的社会影响,也考虑到模型可能会被用于恶意目的,在发布 GPT-2 时,OpenAI 采取了以下策略:仅发布 GPT-2 的较小版本和示例代码,不发布数据集、训练代码和 GPT-2 模型权重


延伸阅读:


ICML 2019 最佳论文:拥有解耦表征的无监督学习是不可能的

机器学习顶会的最佳论文,总会引起人们的广泛讨论。在今年 6 月于美国加州举办的 ICML 2019(国际机器学习大会)上,由苏黎世联邦理工学院(ETH)、德国马普所、谷歌大脑共同完成的《Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations》获得了其中一篇最佳论文研究者在论文中提出了一个与此前学界普遍预测相反的观点:对于任意数据,拥有相互独立表征(解耦表征)的无监督学习是不可能的。


微信图片_20211203005124.jpg


论文链接:https://arxiv.org/abs/1811.12359

在这篇论文中,研究者冷静地审视了该领域的最新进展,并对一些常见的假设提出了质疑。


首先,研究者表示从理论上来看,如果不对模型和数据进行归纳偏置,无监督学习解耦表征基本是不可能的;然后他们在七个不同数据集进行了可复现的大规模实验,并训练了 12000 多个模型,包括一些主流方法和评估指标;最后,实验结果表明,虽然不同的方法强制执行了相应损失「鼓励」的属性,但如果没有监督,似乎无法识别完全解耦的模型。此外,增加的解耦似乎不会导致下游任务学习的样本复杂度的下降。


研究者认为,基于这些理论,机器学习从业者对于超参数的选择是没有经验法则可循的,而在已有大量已训练模型的情况下,无监督的模型选择仍然是一个很大的挑战


神经网络架构搜索新方法无需显式权重训练即可执行各种任务


去年 6 月,来自德国波恩-莱茵-锡格应用技术大学和谷歌大脑的研究者发表了一篇名为《Weight Agnostic Neural Networks》的论文,进而引爆了机器学习圈。在该论文中,他们提出了一种神经网络架构搜索方法,这些网络可以在不进行显式权重训练的情况下执行各种任务


微信图片_20211203005157.jpg


论文链接:https://arxiv.org/pdf/1906.04358.pdf


通常情况下,权重被认为会被训练成 MNIST 中边角、圆弧这类直观特征,而如果论文中的算法可以处理 MNIST,那么它们就不是特征,而是函数序列/组合。对于 AI 可解释性来说,这可能是一个打击。很容易理解,神经网络架构并非「生而平等」,对于特定任务一些网络架构的性能显著优于其他模型。但是相比架构而言,神经网络权重参数的重要性到底有多少?


来自德国波恩-莱茵-锡格应用技术大学和谷歌大脑的一项新研究提出了一种神经网络架构搜索方法,这些网络可以在不进行显式权重训练的情况下执行各种任务。

为了评估这些网络,研究者使用从统一随机分布中采样的单个共享权重参数来连接网络层,并评估期望性能。结果显示,该方法可以找到少量神经网络架构,这些架构可以在没有权重训练的情况下执行多个强化学习任务,或 MNIST 等监督学习任务。


CMU 预训练模型 XLNet


BERT 带来的影响还未平复,CMU 与谷歌大脑 6 月份提出的 XLNet 在 20 个任务上超过了 BERT 的表现,并在 18 个任务上取得了当前最佳效果。


微信图片_20211203005231.jpg


来自卡耐基梅隆大学与谷歌大脑的研究者提出新型预训练语言模型 XLNet,在 SQuAD、GLUE、RACE 等 20 个任务上全面超越 BERT。


作者表示,BERT 这样基于去噪自编码器的预训练模型可以很好地建模双向语境信息,性能优于基于自回归语言模型的预训练方法。然而,由于需要 mask 一部分输入,BERT 忽略了被 mask 位置之间的依赖关系,因此出现预训练和微调效果的差异(pretrain-finetune discrepancy)。


基于这些优缺点,该研究提出了一种泛化的自回归预训练模型 XLNet。XLNet 可以:1)通过最大化所有可能的因式分解顺序的对数似然,学习双向语境信息;2)用自回归本身的特点克服 BERT 的缺点。此外,XLNet 还融合了当前最优自回归模型 Transformer-XL 的思路。


延伸阅读:

AI 攻陷多人德州扑克登上 Science


2019 年 7 月,在无限制德州扑克六人对决的比赛中,德扑 AI Pluribus 成功战胜了五名专家级人类玩家。Pluribus 由 Facebook 与卡耐基梅隆大学(CMU)共同开发,实现了前辈 Libratus(冷扑大师)未能完成的任务,该研究已经登上了当期《科学》杂志。


据介绍,Facebook 和卡内基梅隆大学设计的比赛分为两种模式:1 个 AI+5 个人类玩家和 5 个 AI+1 个人类玩家,Pluribus 在这两种模式中都取得了胜利。如果一个筹码值 1 美元,Pluribus 平均每局能赢 5 美元,与 5 个人类玩家对战一小时就能赢 1000 美元。职业扑克玩家认为这些结果是决定性的胜利优势。这是 AI 首次在玩家人数(或队伍)大于 2 的大型基准游戏中击败顶级职业玩家


在论文中,Pluribus 整合了一种新的在线搜索算法,可以通过搜索前面的几步而不是只搜索到游戏结束来有效地评估其决策。此外,Pluribus 还利用了速度更快的新型 Self-Play 非完美信息游戏算法。综上所述,这些改进使得使用极少的处理能力和内存来训练 Pluribus 成为可能。训练所用的云计算资源总价值还不到 150 美元。这种高效与最近其他人工智能里程碑项目形成了鲜明对比,后者的训练往往要花费数百万美元的计算资源。


Pluribus 的自我博弈结果被称为蓝图策略。在实际游戏中,Pluribus 使用搜索算法提升这一蓝图策略。但是 Pluribus 不会根据从对手身上观察到的倾向调整其策略。


微信图片_20211203005310.jpg实验中 Pluribus 与人类玩家对抗时的界面。


image.gifPluribus 在 10000 手实验中对职业扑克玩家的平均胜率。直线表示实际结果,虚线表示一个标准差。


image.gifPluribus 在与顶尖玩家对战时的筹码数量变化。


延伸阅读:


谷歌宣布实现量子优越性


在人工智能之外的量子计算领域,去年也有重要的研究突破。2019 年 9 月,谷歌提交了一篇名为《Quantum supremacy using a programmable superconducting processor》的论文自 NASA 网站传出,研究人员首次在实验中证明了量子计算机对于传统架构计算机的优越性:在世界第一超算 Summit 需要计算 1 万年的实验中,谷歌的量子计算机只用了 3 分 20 秒。因此,谷歌宣称实现「量子优越性」。之后,该论文登上了《自然》杂志 150 周年版的封面。


微信图片_20211203005436.jpg

谷歌的「量子优越性」论文登上《自然》杂志 150 周年版封面。


这一成果源自科学家们不懈的努力。谷歌在量子计算方向上的研究已经过去了 13 年。2006 年,谷歌科学家 Hartmut Neven 就开始探索有关量子计算加速机器学习的方法。这项工作推动了 Google AI Quantum 团队的成立。2014 年,John Martinis 和他在加利福尼亚大学圣巴巴拉分校(UCSB)的团队加入了谷歌的工作,开始构建量子计算机。两年后,Sergio Boixo 等人的论文发表,谷歌开始将工作重点放在实现量子计算优越性任务上。


如今,该团队已经构建起世界上第一个超越传统架构超级计算机能力的量子系统,可以进行特定任务的计算。


微信图片_20211203005516.jpg谷歌 CEO 桑达尔·皮查伊和圣芭芭拉实验室中谷歌的量子计算机。


量子优越性实验是在一个名为 Sycamore 的 54 量子比特的完全可编程处理器上运行的。该处理器包含一个二维网格,网格中的每个量子比特与其他四个相连。量子优越性实验的成功归功于谷歌改进了具有增强并行性的双量子比特门,即使同时操作多个门,也能可靠地实现记录性能。谷歌使用一种新型的控制旋钮来实现这一性能,该旋钮能够关闭相邻量子比特之间的交互。此举大大减少了这种多连通量子比特系统中的误差。此外,通过优化芯片设计来降低串扰,以及开发避免量子比特缺陷的新控制校准,谷歌进一步提升了性能。


延伸阅读:


DeepMind 星际争霸 AI 登上 Nature


虽然 AI 没有打败最强人类玩家 Serral,但其研究的论文仍然登上了 Nature。2019 年 10 月底,DeepMind 有关 AlphaStar 的论文发表在了当期《Nature》杂志上,这是人工智能算法 AlphaStar 的最新研究进展,展示了 AI 在「没有任何游戏限制的情况下」已经达到星际争霸Ⅱ人类对战天梯的顶级水平,在 Battle.net 上的排名已超越 99.8%的活跃玩家


微信图片_20211203005549.jpg

DeepMind 发推称已达到 Grandmaster 水平。


回顾 AlphaStar 的发展历程,DeepMind 于 2017 年宣布开始研究能进行即时战略游戏星际争霸Ⅱ的人工智能——AlphaStar。2018 年 12 月 10 日,AlphaStar 击败 DeepMind 公司里的最强玩家 Dani Yogatama;12 月 12 日,AlphaStar 已经可以 5:0 击败职业玩家 TLO 了(TLO 是虫族玩家,据游戏解说们认为,其在游戏中的表现大概能有 5000 分水平);又过了一个星期,12 月 19 日,AlphaStar 同样以 5:0 的比分击败了职业玩家 MaNa。至此,AlphaStar 又往前走了一步,达到了主流电子竞技游戏顶级水准。


根据《Nature》论文描述,DeepMind 使用通用机器学习技术(包括神经网络、借助于强化学习的自我博弈、多智能体学习和模仿学习)直接从游戏数据中学习。AlphaStar 的游戏方式令人印象深刻——这个系统非常擅长评估自身的战略地位,并且准确地知道什么时候接近对手、什么时候远离。此外,论文的中心思想是将游戏环境中虚构的自我博弈扩展到一组智能体,即「联盟」。


联盟这一概念的核心思想是:仅仅只是为了赢是不够的。相反,实验需要主要的智能体能够打赢所有玩家,而「压榨(exploiter)」智能体的主要目的是帮助核心智能体暴露问题,从而变得更加强大。这不需要这些智能体去提高它们的胜率。通过使用这样的训练方法,整个智能体联盟在一个端到端的、完全自动化的体系中学到了星际争霸Ⅱ中所有的复杂策略。


延伸阅读:


2019 年在 AI 领域的各个方向上都出现了很多技术突破。新的一年,我们期待更多进展。


此外,机器之心于 2019 年 9 月底推出了自己的新产品 SOTA 模型,读者可以根据自己的需要寻找机器学习对应领域和任务下的 SOTA 论文,平台会提供论文、模型、数据集和 benchmark 的相关信息。


相关文章
|
1月前
|
机器学习/深度学习 人工智能
打开AI黑匣子,三段式AI用于化学研究,优化分子同时产生新化学知识,登Nature
【10月更文挑战第11天】《自然》杂志发表了一项突破性的化学研究,介绍了一种名为“Closed-loop transfer”的AI技术。该技术通过数据生成、模型训练和实验验证三个阶段,不仅优化了分子结构,提高了光稳定性等性质,还发现了新的化学现象,为化学研究提供了新思路。此技术的应用加速了新材料的开发,展示了AI在解决复杂科学问题上的巨大潜力。
29 1
|
9天前
|
人工智能 知识图谱
成熟的AI要学会自己搞研究!MIT推出科研特工
MIT推出科研特工SciAgents,结合生成式AI、本体表示和多代理建模,实现科学发现的自动化。通过大规模知识图谱和多代理系统,SciAgents能探索新领域、识别复杂模式,加速新材料发现,展现跨学科创新潜力。
33 12
|
8天前
|
机器学习/深度学习 人工智能 算法
基于AI的性能优化技术研究
基于AI的性能优化技术研究
|
1月前
|
人工智能 自然语言处理
召唤100多位学者打分,斯坦福新研究:AI科学家创新确实强
【10月更文挑战第6天】斯坦福大学最新研究评估了大型语言模型(LLMs)在生成新颖研究想法方面的能力,通过100多位NLP专家盲评LLMs与人类研究人员提出的想法。结果显示,LLMs在新颖性方面超越人类(p < 0.05),但在可行性上略逊一筹。研究揭示了LLMs作为科研工具的潜力与挑战,并提出了进一步验证其实际效果的设计。论文详见:https://arxiv.org/abs/2409.04109。
39 6
|
1月前
|
人工智能 自然语言处理 机器人
MIT新研究揭秘AI洗脑术!AI聊天诱导人类编造记忆,真假难辨
麻省理工学院的一项新研究《基于大型语言模型的对话式AI在证人访谈中加剧虚假记忆》显示,使用生成式聊天机器人进行犯罪证人访谈会显著增加参与者的虚假记忆,且影响持久。研究设置了对照组、问卷访谈、预设脚本及生成式聊天机器人四种条件,结果显示生成式聊天机器人诱导的虚假记忆数量远超其他方法。尽管AI技术在效率和准确性方面潜力巨大,但在敏感领域需谨慎应用,并需进一步评估风险,制定伦理准则和监管措施。论文详细内容见[这里](https://arxiv.org/abs/2408.04681)。
40 2
|
2月前
|
存储 人工智能 JavaScript
根据Accenture的研究,CEO和CFO谈论AI和GenAI是有原因的
数字化转型与当前GenAI领导者之间的关键区别在于,CEO和CFO(而非CIO)似乎参与了指导AI投资的过程。例如,Accenture在2024年1月报告称,到2023年底,在财报电话会议中提到AI的次数几乎达到4万次,因为C级领导层正在为“重大技术变革”做好准备
41 1
|
3月前
|
边缘计算 人工智能 监控
边缘计算与AI结合的场景案例研究
【8月更文第17天】随着物联网(IoT)设备数量的爆炸性增长,对实时数据处理的需求也随之增加。传统的云计算模型在处理这些数据时可能会遇到延迟问题,尤其是在需要即时响应的应用中。边缘计算作为一种新兴的技术趋势,旨在通过将计算资源更靠近数据源来解决这个问题。本文将探讨如何将人工智能(AI)技术与边缘计算结合,以实现高效的实时数据分析和决策制定。
235 1
|
4月前
|
数据采集 机器学习/深度学习 人工智能
AI小分子药物发现的百科全书,康奈尔、剑桥、EPFL等研究者综述登Nature子刊
【7月更文挑战第12天】康奈尔、剑桥及EPFL科学家合作,详述AI在药物发现中的突破与挑战[^1]。AI现用于新化合物生成、现有药物优化及再利用,加速研发进程。尽管取得进展,可解释性不足、数据质量和伦理监管仍是待解难题。 [^1]: [论文链接](https://www.nature.com/articles/s42256-024-00843-5)
64 3
|
5月前
|
存储 人工智能 Kubernetes
[AI OpenAI] 保护前沿AI研究基础设施的安全
概述支持OpenAI前沿AI模型安全训练的架构。
[AI OpenAI] 保护前沿AI研究基础设施的安全
|
5月前
|
人工智能 安全 网络安全
简述AI漏洞修复研究现状及发展方向
鲁军磊先生的演讲聚焦AI在网络安全中的应用,特别是自动化漏洞修复。他讨论了大模型技术的最新进展,AI如何增强漏洞发现与修复,并介绍了AI智能体的三种协作模式。传统漏洞修复流程从手工审计到智能化挖掘逐步演进,而AI技术通过智能决策和自动化执行提高效率。未来趋势包括智能化防御、跨域协同、安全合规自动化、隐私保护强化和安全技能普及,以及可持续安全生态建设。AI正重塑网络安全领域,推动更高效、精准的防御策略。