How AI can fight the phenomenon of fake news

简介: One of the more unsettling developments in recent months has been the phenomenon of 'fake news', where audiences consume and share news stories on social media which are not factually correct.

How_AI_can_fight_the_phenomenon_of_fake_news

One of the more unsettling developments in recent months has been the phenomenon of 'fake news', where audiences consume and share news stories on social media which are not factually correct. The US election represented a peak in the dissemination of fake news, but the problem still persists today, in part because fake news stories make controversial claims that generate 'hits' and ad revenue, thus creating a financial incentive to produce more fake news.

The worrying implication of fake news is that it promotes false beliefs among members of society, which could result in bad decisions being made because they are based on fiction rather than fact. Fortunately, computing experts believe that AI technology holds the key to combating the fake news phenomenon, especially through machine learning and natural language processing.

Machine learning

It is possible to train a machine to detect fake news through machine learning. By exposing a machine to thousands of fake news articles, as well as thousands of real news articles, the machine can learn patterns from which to distinguish fake from real news 1. For instance, fake news may have more sensational headlines. Using the knowledge it has learned, the machine is then able to detect whether a future news article is fake, and will continue to update its ability to predict fake news based on new input.

Natural language processing

Another way to detect fake news is through natural language processing. For example, a machine could analyze the rhetorical structure of a news article, including the central argument, the supporting evidence of the argument, and the tone of the language, to determine whether the article is making a logical argument supported by evidence or is instead making spurious and illogical claims 2.

But AI is not invincible

Internet giants such as Facebook are developing the kinds of AI technologies described above to combat fake news 3. However, while AI can help curb the rise of fake news, it is not invincible. It may occasionally make mistakes, known as Type I (false negative) and Type II (false positive) errors. A false negative would result in a machine labelling a fake news article as true, and a false positive would result in a machine labelling a true news article as fake. Realistically, AI should minimize such errors, but cannot eliminate them entirely, especially if fake news producers discern ways to manipulate the machine into making mistakes (such as by altering the structure of their articles).

The dilemma of combating fake news may be analogous to blocking spam email. Over the years, new ways have been developed to block spam, but these have only resulted in new ways to get around the blocking, meaning that spam is here to stay, even if it's not as prevalent as it once was. The same situation may end up being the case for fake news.

1https://chatbotslife.com/can-machine-learning-detect-fake-news-4c0ac07e9e6d
2https://venturebeat.com/2017/03/18/can-ai-stamp-out-fake-news/
3http://diginomica.com/2017/02/02/facebook-takes-fake-news-ai-new-age-alternative-facts/

目录
相关文章
|
人工智能
5 AI Trends We Can Expect to See in 2017 and Beyond
Artificial Intelligence (AI) continues to make big strides as a changemaker across various industries, unlocking significant opportunities to transf
2159 0
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术深度解析:从基础到应用的全面介绍
人工智能(AI)技术的迅猛发展,正在深刻改变着我们的生活和工作方式。从自然语言处理(NLP)到机器学习,从神经网络到大型语言模型(LLM),AI技术的每一次进步都带来了前所未有的机遇和挑战。本文将从背景、历史、业务场景、Python代码示例、流程图以及如何上手等多个方面,对AI技术中的关键组件进行深度解析,为读者呈现一个全面而深入的AI技术世界。
69 10
|
4天前
|
机器学习/深度学习 人工智能 物联网
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
12月14日,由中国软件行业校园招聘与实习公共服务平台携手魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·湖南大学站圆满结营。
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
|
15天前
|
机器学习/深度学习 人工智能 自然语言处理
转载:【AI系统】AI的领域、场景与行业应用
本文概述了AI的历史、现状及发展趋势,探讨了AI在计算机视觉、自然语言处理、语音识别等领域的应用,以及在金融、医疗、教育、互联网等行业中的实践案例。随着技术进步,AI模型正从单一走向多样化,从小规模到大规模分布式训练,企业级AI系统设计面临更多挑战,同时也带来了新的研究与工程实践机遇。文中强调了AI基础设施的重要性,并鼓励读者深入了解AI系统的设计原则与研究方法,共同推动AI技术的发展。
转载:【AI系统】AI的领域、场景与行业应用
|
10天前
|
机器学习/深度学习 人工智能 算法
探索AI在医疗诊断中的应用与挑战
【10月更文挑战第21天】 本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状与面临的挑战,旨在为读者提供一个全面的视角,了解AI如何改变传统医疗模式,以及这一变革过程中所伴随的技术、伦理和法律问题。通过分析AI技术的优势和局限性,本文旨在促进对AI在医疗领域应用的更深层次理解和讨论。
|
15天前
|
人工智能 缓存 异构计算
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建
|
21天前
|
机器学习/深度学习 人工智能 JSON
【实战干货】AI大模型工程应用于车联网场景的实战总结
本文介绍了图像生成技术在AIGC领域的发展历程、关键技术和当前趋势,以及这些技术如何应用于新能源汽车行业的车联网服务中。
314 34
|
15天前
|
机器学习/深度学习 人工智能 物联网
AI赋能大学计划·大模型技术与应用实战学生训练营——电子科技大学站圆满结营
12月05日,由中国软件行业校园招聘与实习公共服务平台携手阿里魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·电子科技大学站圆满结营。
AI赋能大学计划·大模型技术与应用实战学生训练营——电子科技大学站圆满结营
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在自然语言处理中的突破:从理论到应用
AI在自然语言处理中的突破:从理论到应用
54 17
|
6天前
|
人工智能 Serverless API
尽享红利,Serverless构建企业AI应用方案与实践
本次课程由阿里云云原生架构师计缘分享,主题为“尽享红利,Serverless构建企业AI应用方案与实践”。课程分为四个部分:1) Serverless技术价值,介绍其发展趋势及优势;2) Serverless函数计算与AI的结合,探讨两者融合的应用场景;3) Serverless函数计算AIGC应用方案,展示具体的技术实现和客户案例;4) 业务初期如何降低使用门槛,提供新用户权益和免费资源。通过这些内容,帮助企业和开发者快速构建高效、低成本的AI应用。
45 12