How AI can fight the phenomenon of fake news

简介: One of the more unsettling developments in recent months has been the phenomenon of 'fake news', where audiences consume and share news stories on social media which are not factually correct.

How_AI_can_fight_the_phenomenon_of_fake_news

One of the more unsettling developments in recent months has been the phenomenon of 'fake news', where audiences consume and share news stories on social media which are not factually correct. The US election represented a peak in the dissemination of fake news, but the problem still persists today, in part because fake news stories make controversial claims that generate 'hits' and ad revenue, thus creating a financial incentive to produce more fake news.

The worrying implication of fake news is that it promotes false beliefs among members of society, which could result in bad decisions being made because they are based on fiction rather than fact. Fortunately, computing experts believe that AI technology holds the key to combating the fake news phenomenon, especially through machine learning and natural language processing.

Machine learning

It is possible to train a machine to detect fake news through machine learning. By exposing a machine to thousands of fake news articles, as well as thousands of real news articles, the machine can learn patterns from which to distinguish fake from real news 1. For instance, fake news may have more sensational headlines. Using the knowledge it has learned, the machine is then able to detect whether a future news article is fake, and will continue to update its ability to predict fake news based on new input.

Natural language processing

Another way to detect fake news is through natural language processing. For example, a machine could analyze the rhetorical structure of a news article, including the central argument, the supporting evidence of the argument, and the tone of the language, to determine whether the article is making a logical argument supported by evidence or is instead making spurious and illogical claims 2.

But AI is not invincible

Internet giants such as Facebook are developing the kinds of AI technologies described above to combat fake news 3. However, while AI can help curb the rise of fake news, it is not invincible. It may occasionally make mistakes, known as Type I (false negative) and Type II (false positive) errors. A false negative would result in a machine labelling a fake news article as true, and a false positive would result in a machine labelling a true news article as fake. Realistically, AI should minimize such errors, but cannot eliminate them entirely, especially if fake news producers discern ways to manipulate the machine into making mistakes (such as by altering the structure of their articles).

The dilemma of combating fake news may be analogous to blocking spam email. Over the years, new ways have been developed to block spam, but these have only resulted in new ways to get around the blocking, meaning that spam is here to stay, even if it's not as prevalent as it once was. The same situation may end up being the case for fake news.

1https://chatbotslife.com/can-machine-learning-detect-fake-news-4c0ac07e9e6d
2https://venturebeat.com/2017/03/18/can-ai-stamp-out-fake-news/
3http://diginomica.com/2017/02/02/facebook-takes-fake-news-ai-new-age-alternative-facts/

目录
相关文章
|
人工智能
5 AI Trends We Can Expect to See in 2017 and Beyond
Artificial Intelligence (AI) continues to make big strides as a changemaker across various industries, unlocking significant opportunities to transf
2236 0
|
1月前
|
人工智能 运维 Kubernetes
Serverless 应用引擎 SAE:为传统应用托底,为 AI 创新加速
在容器技术持续演进与 AI 全面爆发的当下,企业既要稳健托管传统业务,又要高效落地 AI 创新,如何在复杂的基础设施与频繁的版本变化中保持敏捷、稳定与低成本,成了所有技术团队的共同挑战。阿里云 Serverless 应用引擎(SAE)正是为应对这一时代挑战而生的破局者,SAE 以“免运维、强稳定、极致降本”为核心,通过一站式的应用级托管能力,同时支撑传统应用与 AI 应用,让企业把更多精力投入到业务创新。
397 29
|
1月前
|
消息中间件 人工智能 安全
云原生进化论:加速构建 AI 应用
本文将和大家分享过去一年在支持企业构建 AI 应用过程的一些实践和思考。
453 27
|
2月前
|
人工智能 安全 中间件
阿里云 AI 中间件重磅发布,打通 AI 应用落地“最后一公里”
9 月 26 日,2025 云栖大会 AI 中间件:AI 时代的中间件技术演进与创新实践论坛上,阿里云智能集团资深技术专家林清山发表主题演讲《未来已来:下一代 AI 中间件重磅发布,解锁 AI 应用架构新范式》,重磅发布阿里云 AI 中间件,提供面向分布式多 Agent 架构的基座,包括:AgentScope-Java(兼容 Spring AI Alibaba 生态),AI MQ(基于Apache RocketMQ 的 AI 能力升级),AI 网关 Higress,AI 注册与配置中心 Nacos,以及覆盖模型与算力的 AI 可观测体系。
782 39
|
1月前
|
设计模式 人工智能 自然语言处理
3个月圈粉百万,这个AI应用在海外火了
不知道大家还记不记得,我之前推荐过一个叫 Agnes 的 AI 应用,也是当时在 WAIC 了解到的。
306 1
|
1月前
|
消息中间件 人工智能 安全
构建企业级 AI 应用:为什么我们需要 AI 中间件?
阿里云发布AI中间件,涵盖AgentScope-Java、AI MQ、Higress、Nacos及可观测体系,全面开源核心技术,助力企业构建分布式多Agent架构,推动AI原生应用规模化落地。
228 0
构建企业级 AI 应用:为什么我们需要 AI 中间件?
|
1月前
|
人工智能 算法 Java
Java与AI驱动区块链:构建智能合约与去中心化AI应用
区块链技术和人工智能的融合正在开创去中心化智能应用的新纪元。本文深入探讨如何使用Java构建AI驱动的区块链应用,涵盖智能合约开发、去中心化AI模型训练与推理、数据隐私保护以及通证经济激励等核心主题。我们将完整展示从区块链基础集成、智能合约编写、AI模型上链到去中心化应用(DApp)开发的全流程,为构建下一代可信、透明的智能去中心化系统提供完整技术方案。
227 3
|
1月前
|
存储 人工智能 NoSQL
AI大模型应用实践 八:如何通过RAG数据库实现大模型的私有化定制与优化
RAG技术通过融合外部知识库与大模型,实现知识动态更新与私有化定制,解决大模型知识固化、幻觉及数据安全难题。本文详解RAG原理、数据库选型(向量库、图库、知识图谱、混合架构)及应用场景,助力企业高效构建安全、可解释的智能系统。
|
2月前
|
存储 人工智能 Serverless
函数计算进化之路:AI 应用运行时的状态剖析
AI应用正从“请求-响应”迈向“对话式智能体”,推动Serverless架构向“会话原生”演进。阿里云函数计算引领云上 AI 应用 Serverless 运行时技术创新,实现性能、隔离与成本平衡,开启Serverless AI新范式。
407 12
|
1月前
|
人工智能 缓存 运维
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
本文介绍联调造数场景下的AI应用演进:从单Agent模式到多Agent协同的架构升级。针对复杂指令执行不准、响应慢等问题,通过意图识别、工具引擎、推理执行等多Agent分工协作,结合工程化手段提升准确性与效率,并分享了关键设计思路与实践心得。
399 20
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀

热门文章

最新文章

下一篇
oss云网关配置