小白学数据:一文看懂NoSQL数据库

简介:

如果你关注大数据科技动向,可能听说过一个叫NoSQL数据库的名词,这可能让人有些云里雾里。其实我们处在一个激动人心的技术更迭时代,以甲骨文为代表的SQL数据库已经称霸了企业市场30年,而近年来的NoSQL则是强有力的更新换代的竞争者。这篇文章就通过问答的方式来给小白解释NoSQL数据库系统是什么,无论你的技术背景如何都能看得懂。对于数据分析从业人员来说,了解数据库的趋势可以让你的职业生涯如虎添翼;而对于工程师来说,了解新的基础系统更是必不可少的行业知识。



◆ ◆ 

几个基本问题


小白问:数据库是什么东西,可以吃吗?

答:......不可以。数据库呢,就是存储数据的地方,就像冰箱是存储食物的地方一样。

 

小白问:诶?我的数据就存储在自己电脑里面的excel表里里,还要数据库干嘛?

答:自己的数据的确很方便,但是对于企业来说就不一样了。一个公司里面可能有成千上万的Excel表格,还在不同的电脑上,而他们的员工和客户需要实时看到企业给他们提供的所有数据,这种文件管理的方法就很麻烦,总不能每分钟都把一个新的巨大无比的excel文件发给所有客户呀!而且数据库更有用的是进行查询,企业会给内部或者客户开发不同的应用,而这些应用需要数据的时候可以直接实用数据库的查询语句快速得到结果。

 

小白问:哦,那是说所有的人都直接在这个系统上查数据和改数据吗?

答:是的,数据库也会帮助你处理“并发”,也就是如果多个人同时在改数据的情况。比如你在支付宝给小灰转账,而小灰这个时候又偏偏刚好在给你转账,这时候数据库系统就要保证你们两个人最后余额都是正确的,并且在你们进行交易的时候别人如果同时查询你们俩人的余额都会得到精确的结果。在一个企业系统中,一秒钟可能有成千上万个这样的查询和改动发生呢。

 

小白问:那SQL又是什么鬼?

答:SQL是一种可以查询关系型数据库的语言,关系型数据库也叫SQL数据库。

所谓关系型数据库就是数据是以表格的形式进行存储的,就和你电脑上的Excel表一样,数据是一行一列整整齐齐的躺着的。表格之间有着这样或那样的关系,可以通过某信息连接在一起 。想查这些表格里的任何数据的程序员们就可以把他们想要的数据形式转化成SQL语句然后发给数据库,得到数据结果。比如你可以有一个食物管理的数据库,里面有两个表(食物表和主人表),长成下面的这个样子:

 

食物编号食物名称数量 喜爱程度主人编号

1             猕猴桃      4      53

2    菠菜         10      2  2

3巧克力      99    1001

 

主人编号主人姓名      主人性别 

1小白                 女 

2小黑                 男 

3小灰                 男 

 

我们可以写一句简单的SQL语句直接调出所有男主人拥有的食品及数量。

 

SELECT 主人姓名,食物名称,数量

FROM 食物表,主人表

WHERE  食物表.主人编号=主人表.主人编号 AND 主人性别=‘男’

=>

主人姓名食物名称数量

小黑菠菜10

小灰猕猴桃 4




◆ ◆ 

深入聊聊


小白问:哦,那NoSQL到底有什么过人之处呢?

答:因为近年来企业要处理的数据越来越多,越来越复杂,就出现了两个之前关系型数据库解决不了的问题:快速增长的数据规模和日渐复杂的数据模型。


第一个问题就是数据越来越多,公司以前买的装关系型数据库的那台电脑放不下了,那这个时候就有两种选择:

一种就是直接去买一台更大空间的计算机取代现有的机器。这个方法是有限制的,因为这种机器的价格一般非常昂贵,而且这个空间总是有一个上限的。


另外一种选择就是再买一台机器,然后把新的数据放到新机器里的另外一个SQL数据库里面,这个过程也叫“分片”(sharding)。 这个时候程序员要开始杯具的加班了。因为这个转换的过程非常容易出问题,而且会给使用数据库的应用增加很多的复杂度。比如我们之前的例子,在查询食品和数量的语句的时候我们要将同样的语句同时发给两个服务器,然后把最后的结果综合起来,给应用的开发增加了很多不必要的负担。分片还有很多别的缺点我就不一一赘述了。


而NoSQL数据库的服务器本身就支持很多个机器存储数据进行分布式查询,这样当空间不够用的时候就直接去扛一台新的机器回来连接到已有的计算机集群上装好数据库即可,程序员可以回家睡个好觉啦。

 

小白问:明白了,那另外一个关系型数据库没有解决的问题呢?

答:另外的一个问题就是把数据放到SQL数据之前要进行数据建模,也就是要考虑好每一个表里面每一列都代表什么,不同的表格之间要怎样相互关联起来。这对很多公司来说是一件非常耗费时间和精力的事情,因为他们的数据源的种类太多了。而且在数据进入数据库之后,如果在表中增加新的一列(比如想把食物的种类加进第一个表中)或者是要改变某一列的特性的话,对于系统来说是非常困难的,因为表中的数据已经一行行的存好了。

而NoSQL数据库就减轻了数据建模的负担,比如上面的表里面的一行可以变成下面JSON文档的样子:

{

食物名称:猕猴桃,

数量:4,

喜爱程度:5,

主人:{

    姓名:小灰,

    性别:男

 }

}



这样很方便的可以修改数据模型的样子,而且从源数据不需要怎么改就可以放入数据库。目前用有一个行业叫做ETL,就是专门做数据形状转化的:他们将不同的源数据打磨到想要的表格的模子里,然后放入关系型数据库。这个行业价值好几十亿美元呢,很疯狂吧?用了NoSQL,公司可以节省好多时间和人民币呢。

 

小白:那是说NoSQL就是用文档,而SQL就是用表格吗?

答:NoSQL其实有很多不同的种类的,适用在不同的情况中并且分别有不同的存储方法。JSON是文档类NoSQL的典型格式,我们平时使用的word和pdf文件都可以很容易放入文档型数据库进行查询。而其他种类的NoSQL也可能是用图或者哈希表的模型来存储数据。如果你的数据存储的是一个社交网络类型的应用,那么对你来说用一个基于图的数据库可能更加合适,因为你关心的社交网络场景中的问题都可以得到比较快速的回答。

 

小白问:既然叫NoSQL,那和SQL肯定是水火不容咯?

答:哪有,NoSql其实是Not Only SQL,就是不仅仅是SQL,有一些NoSQL数据库还支持直接用SQL来做查询呢。两者的区别主要是我上面提到的两点: 1.对数据建模的要求不同:NoSQL的建模程序比较简单灵活;2.对数据增加的处理方式不同:使用NoSQL可以直接进行分布式处理。在数据规模增长需要增加新的机器的时候,不需要程序员对使用数据库的应用进行代码进行改动,直接在数据库集群中增加一台新的计算机就可以啦。


---------------------------------- 

预告:这篇文章是NoSQL的入门介绍。如果你对数据库已经有所了解,请期待我们的下一篇文章,将介绍不同种类的NoSQL数据库、如何在不同的应用场景中选取适合的数据库系统以及未来技术展望,敬请期待。


原文发布时间为:2016-04-16

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“BigDataDigest”微信公众号

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍如何基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
相关文章
|
7月前
|
存储 JSON 关系型数据库
【干货满满】解密 API 数据解析:从 JSON 到数据库存储的完整流程
本文详解电商API开发中JSON数据解析与数据库存储的全流程,涵盖数据提取、清洗、转换及优化策略,结合Python实战代码与主流数据库方案,助开发者构建高效、可靠的数据处理管道。
|
4月前
|
人工智能 运维 NoSQL
云栖大会|AI浪潮下的NoSQL演进:下一代数据库的破局之道
AI浪潮下的NoSQL演进:下一代数据库的破局之道
|
5月前
|
数据采集 关系型数据库 MySQL
python爬取数据存入数据库
Python爬虫结合Scrapy与SQLAlchemy,实现高效数据采集并存入MySQL/PostgreSQL/SQLite。通过ORM映射、连接池优化与批量提交,支持百万级数据高速写入,具备良好的可扩展性与稳定性。
|
6月前
|
存储 数据管理 数据库
数据字典是什么?和数据库、数据仓库有什么关系?
在数据处理中,你是否常困惑于字段含义、指标计算或数据来源?数据字典正是解答这些问题的关键工具,它清晰定义数据的名称、类型、来源、计算方式等,服务于开发者、分析师和数据管理者。本文详解数据字典的定义、组成及其与数据库、数据仓库的关系,助你夯实数据基础。
数据字典是什么?和数据库、数据仓库有什么关系?
|
5月前
|
人工智能 Java 关系型数据库
使用数据连接池进行数据库操作
使用数据连接池进行数据库操作
165 11
|
6月前
|
存储 关系型数据库 数据库
【赵渝强老师】PostgreSQL数据库的WAL日志与数据写入的过程
PostgreSQL中的WAL(预写日志)是保证数据完整性的关键技术。在数据修改前,系统会先将日志写入WAL,确保宕机时可通过日志恢复数据。它减少了磁盘I/O,提升了性能,并支持手动切换日志文件。WAL文件默认存储在pg_wal目录下,采用16进制命名规则。此外,PostgreSQL提供pg_waldump工具解析日志内容。
620 0
|
5月前
|
缓存 关系型数据库 BI
使用MYSQL Report分析数据库性能(下)
使用MYSQL Report分析数据库性能
443 158
|
5月前
|
关系型数据库 MySQL 数据库
自建数据库如何迁移至RDS MySQL实例
数据库迁移是一项复杂且耗时的工程,需考虑数据安全、完整性及业务中断影响。使用阿里云数据传输服务DTS,可快速、平滑完成迁移任务,将应用停机时间降至分钟级。您还可通过全量备份自建数据库并恢复至RDS MySQL实例,实现间接迁移上云。
|
5月前
|
关系型数据库 MySQL 数据库
阿里云数据库RDS费用价格:MySQL、SQL Server、PostgreSQL和MariaDB引擎收费标准
阿里云RDS数据库支持MySQL、SQL Server、PostgreSQL、MariaDB,多种引擎优惠上线!MySQL倚天版88元/年,SQL Server 2核4G仅299元/年,PostgreSQL 227元/年起。高可用、可弹性伸缩,安全稳定。详情见官网活动页。
1038 152