数据挖掘与数据化运营实战. 3.13 决策支持

简介:
+关注继续查看

3.13 决策支持

决策支持是现代企业管理中大家耳熟能详的词汇。数据分析挖掘所承担的决策支持主要是指通过数据分析结论、数据模型对管理层的管理、决策提供响应和支持,从而帮助决策层提高决策水平和质量。

对于现代企业和事业单位的管理层来说,数据分析的决策支持一部分是通过计算机应用系统自动实现的,这部分就是所谓的决策支持系统(Decision Support System,DSS),最常见的输出物就是企业层面的核心日报、周报等。每天会由计算机应用系统自动生成这些报表,供管理层决策参考,另一部分是非常规的、特定的分析内容,包括特定的专题分析、专题调研等。

无论是报表还是专题分析,对于数据分析师来说,所涉及的承担决策支持的工作与支持业务部门的数据分析,在技术和方法上并没有本质的区别和差异。但是在以下方面会有一定的差别:

决策支持的数据分析工作要求数据分析师站在更高的角度,用更宽的视野进行数据分析。由于是供企业决策层参考的,所以数据分析师要站在企业全景、市场竞争的全局来考虑分析思路和结论。

服务的对象不同。这似乎是废话,但是在数据分析挖掘实践中,这的确也是数据分析师不能回避的问题。在实践中,因为是为决策层服务的,所以对分析的时间要求常会更严格,项目的优先级也会更高,而且对结论的准确性和精确性的要求也会相对比较苛刻。

相关文章
|
10月前
|
数据采集 机器学习/深度学习 监控
【数据挖掘实战】——电力窃漏电用户自动识别
【数据挖掘实战】——电力窃漏电用户自动识别
652 0
【数据挖掘实战】——电力窃漏电用户自动识别
|
10月前
|
存储 自然语言处理 算法
数据挖掘实战—使用 word2vec 和 k-mean 聚类寻找相似城市
数据挖掘实战—使用 word2vec 和 k-mean 聚类寻找相似城市
172 0
数据挖掘实战—使用 word2vec 和 k-mean 聚类寻找相似城市
|
10月前
|
自然语言处理 算法 数据挖掘
数据挖掘实战—使用xgboost实现酒店信息消歧
数据挖掘实战—使用xgboost实现酒店信息消歧
178 0
数据挖掘实战—使用xgboost实现酒店信息消歧
|
算法 数据可视化 数据挖掘
python数据挖掘之K-Means 二分K-means K-means++ 以及DBSCAN算法的实战应用(超详细必看)
python数据挖掘之K-Means 二分K-means K-means++ 以及DBSCAN算法的实战应用(超详细必看)
181 0
python数据挖掘之K-Means 二分K-means K-means++ 以及DBSCAN算法的实战应用(超详细必看)
|
机器学习/深度学习 数据采集 算法
数据挖掘实战:个人信贷违约预测(下)
大家好,我是东哥。本次分享一个数据挖掘实战项目:个人信贷违约预测,此项目对于想要学习信贷风控模型的同学非常有帮助,数据和源码在文末。
数据挖掘实战:个人信贷违约预测(下)
|
机器学习/深度学习 数据采集 算法
数据挖掘实战:个人信贷违约预测(上)
大家好,我是东哥。本次分享一个数据挖掘实战项目:个人信贷违约预测,此项目对于想要学习信贷风控模型的同学非常有帮助,数据和源码在文末。
数据挖掘实战:个人信贷违约预测(上)
|
数据挖掘 Python 数据采集
带你读《Python金融大数据挖掘与分析全流程详解》之三:金融数据挖掘案例实战1
本书以功能强大且较易上手的Python语言为编程环境,全面讲解了金融数据的获取、处理、分析及结果呈现。全书共16章,内容涉及Python基础知识、网络数据爬虫技术、数据库存取、数据清洗、数据可视化、数据相关性分析、IP代理、浏览器模拟操控、邮件发送、定时任务、文件读写、云端部署、机器学习等,可以实现舆情监控、智能投顾、量化金融、大数据风控、金融反欺诈模型等多种金融应用。
|
消息中间件 分布式计算 大数据
Hadoop大数据挖掘从入门到进阶实战
1.概述   大数据时代,数据的存储与挖掘至关重要。企业在追求高可用性、高扩展性及高容错性的大数据处理平台的同时还希望能够降低成本,而Hadoop为实现这些需求提供了解决方案。面对Hadoop的普及和学习热潮,笔者愿意分享自己多年的开发经验,带领读者比较轻松地掌握Hadoop数据挖掘的相关知识。
1879 0
|
数据挖掘 Python
数据挖掘实战(一):Kaggle竞赛经典案例剖析
Load Lib 在这边提一下为什么要加 import warnings warnings.filterwarnings('ignore') 主要就是为了美观,如果不加的话,warning一堆堆的,不甚整洁。
7517 0
热门文章
最新文章
推荐文章
更多