数据挖掘与数据化运营实战. 3.10 信用风险模型-阿里云开发者社区

开发者社区> 华章出版社> 正文

数据挖掘与数据化运营实战. 3.10 信用风险模型

简介:

3.10 信用风险模型

这里的信用风险包括欺诈预警、纠纷预警、高危用户判断等。在互联网高度发达,互联网技术日新月异的今天,基于网络的信用风险管理显得尤其基础,尤其重要。

虽然目前信用风险已经作为一个独立的专题被越来越多的互联网企业所重视,并且有专门的数据分析团队和风控团队负责信用风险的分析和监控管理,但是从数据分析挖掘的角度来说,信用风险分析和模型的搭建跟常规的数据分析挖掘没有本质的区别,所采用的算法都是一样的,思路也是类似的。如果一定要找出这两者之间的区别,那就得从业务背景考虑了,从风险的业务背景来看,信用风险分析与模型相比于常规的数据分析挖掘有以下一些特点:

分析结论或者欺诈识别模型的时效更短,需要优化(更新)的频率更高。网络上骗子的行骗手法经常会变化,导致分析预警行骗欺诈的模型也要因此持续更新。

行骗手段的变化很大程度上是随机性的,所以这对欺诈预警模型的及时性和准确性提出了严重的挑战。

对根据预测模型提炼出的核心因子进行简单的规则梳理和罗列,这样就可在风控管理的初期阶段有效锁定潜在的目标群体。

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

分享:

华章出版社

官方博客
官网链接