数据挖掘与数据化运营实战. 3.2 目标客户的预测(响应、分类)模型

简介:

3.2 目标客户的预测(响应、分类)模型

这里的预测(响应、分类)模型包括流失预警模型、付费预测模型、续费预测模型、运营活动响应模型等。

预测(响应、分类)模型是数据挖掘中最常用的一种模型类型,几乎成了数据挖掘技术应用的一个主要代名词。很多书籍介绍到数据挖掘的技术和应用,首先都会列举预测(响应、分类)模型,主要的原因可能是响应模型的核心就是响应概率,而响应概率其实就是我们在第1章中介绍的数据化运营六要素里的核心要素—概率(Probability),数据化运营6要素的核心是以数据分析挖掘支撑的目标响应概率(Probability),在此基础上围绕产品功能优化、目标用户细分、活动(文案)创意、渠道优化、成本的调整等重要环节、要素,共同达成数据化运营的持续完善、成功。

预测(响应、分类)模型基于真实业务场景产生的数据而进行的预测(响应、分类)模型搭建,其中涉及的主要数据挖掘技术包括逻辑回归、决策树、神经网络、支持向量机等。有没有一个算法总是优先于其他算法呢?答案是否定的,没有哪个算法在任何场景下都总能最优胜任响应模型的搭建,所以在通常的建模过程中,数据分析师都会尝试多种不同的算法,然后根据随后的验证效果以及具体业务项目的资源和价值进行权衡,并做出最终的选择。

根据建模数据中实际响应比例的大小进行分类,响应模型还可以细分为普通响应模型和稀有事件响应模型,一般来讲,如果响应比例低于1%,则应当作为稀有事件响应模型来进行处理,其中的核心就是抽样,通过抽样技术人为放大分析数据样本里响应事件的比例,增加响应事件的浓度,从而在建模过程中更好地捕捉、拟合其中自变量与因变量的关系。

预测(响应、分类)模型除了可以有效预测个体响应的概率之外,模型本身显示出的重要输入变量与目标变量的关系也有重要的业务价值,比如说可以转化成伴随(甚至导致)发生响应(生成事件)的关联因素、重要因素的提炼。而很多时候,这种重要因素的提炼,是可以作为数据化运营中的新规则、新启发,甚至是运营的“新抓手”的。诚然,从严格的统计学角度来看,预测响应模型中的输入变量与目标变量之间的重要关系并不一定是因果关系,严格意义上的因果关系还需要后期进行深入的分析和实验;即便如此,这种输入变量与目标变量之间的重要关系也常常会对数据化运营具有重要的参考和启发价值。

比如说,我们通过对在线交易的卖家进行深入分析挖掘,建立了预测响应模型,从而根据一系列特定行为和属性的组合,来判断在特定时间段内发生在线交易的可能性。这个响应模型除了生成每个Member_Id在特定时间段发生在线交易的可能性之外,从模型中提炼出来的一些重要输入变量与目标变量(是否发生在线交易),以及它们之间的关系(包括正向或负向关系,重要性的强弱等)对数据化运营也有着很重要的参考和启发。在本案例中,我们发现输入变量近30天店铺曝光量、店铺装修打分超过25分等与是否在线交易有着最大的正相关。根据这些发现和规则整理,尽管不能肯定这些输入变量与是否在线交易有因果关系,但这些正向的强烈的关联性也足以为提升在线交易的数据化运营提供重要的启发和抓手。我们有一定的理由相信,如果卖家提升店铺的曝光量,如果卖家把自己的店铺装修得更好,促进卖家在线成交的可能性会加大。

相关文章
|
12天前
|
数据采集 传感器 算法
从数据中挖掘洞见:初探数据挖掘的艺术与科学
从数据中挖掘洞见:初探数据挖掘的艺术与科学
50 11
|
7月前
|
SQL 存储 算法
【数据挖掘】恒生金融有限公司2023届秋招数据ETL工程师笔试题解析
恒生科技2022年9月24号数据ETL工程师岗位的笔试题目及答案汇总,包括了SQL选择题、SQL编程题和业务应用SQL编程题,涵盖了数据库基础知识、SQL语句编写以及数据仓库概念等多个方面。
102 2
【数据挖掘】恒生金融有限公司2023届秋招数据ETL工程师笔试题解析
|
7月前
|
机器学习/深度学习 安全 算法
【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 32页和40页论文及实现代码
本文总结了2023年第十一届泰迪杯数据挖掘挑战赛A题的新冠疫情防控数据分析,提供了32页和40页的论文以及实现代码,涉及密接者追踪、疫苗接种影响分析、重点场所管控以及疫情趋势研判等多个方面,运用了机器学习算法和SEIR传染病模型等方法。
125 0
【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 32页和40页论文及实现代码
|
7月前
|
机器学习/深度学习 安全 算法
【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 建模方案及python代码详解
本文介绍了2023年第十一届泰迪杯数据挖掘挑战赛A题的解题思路和Python代码实现,涵盖了新冠疫情防控数据的分析、建模方案以及数据治理的具体工作。
123 0
【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 建模方案及python代码详解
|
9月前
|
数据采集 数据可视化 数据挖掘
数据挖掘实战:使用Python进行数据分析与可视化
在大数据时代,Python因其强大库支持和易学性成为数据挖掘的首选语言。本文通过一个电商销售数据案例,演示如何使用Python进行数据预处理(如处理缺失值)、分析(如销售额时间趋势)和可视化(如商品类别销售条形图),揭示数据背后的模式。安装`pandas`, `numpy`, `matplotlib`, `seaborn`后,可以按照提供的代码步骤,从读取CSV到数据探索,体验Python在数据分析中的威力。这只是数据科学的入门,更多高级技术等待发掘。【6月更文挑战第14天】
945 11
|
9月前
|
数据采集 机器学习/深度学习 数据可视化
数据挖掘实战:Python在金融数据分析中的应用案例
Python在金融数据分析中扮演关键角色,用于预测市场趋势和风险管理。本文通过案例展示了使用Python库(如pandas、numpy、matplotlib等)进行数据获取、清洗、分析和建立预测模型,例如计算苹果公司(AAPL)股票的简单移动平均线,以展示基本流程。此示例为更复杂的金融建模奠定了基础。【6月更文挑战第13天】
2025 3
|
9月前
|
人工智能 分布式计算 算法
数据挖掘实战随笔更新清单
这是一系列技术博客的摘要,涵盖了多个主题。包括Elasticsearch实战经验、Maxcompute中的Geohash转换和GPS处理、Python环境配置与管理(如Jupyter、Miniforge、Miniconda)、批量接口调用、多进程CSV图片下载、Excel到Markdown转换、Scikit-learn的异常检测(OC-SVM)和模型总结、人工智能领域的图像分类和识别、文本挖掘算法以及数仓相关的行转列处理。所有文章都在持续更新和补充中。
66 2