《大数据机器学习实践探索》 ---- 总目录

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 本专栏《大数据处理实践探索》 通过记录基于Python 的大数据处理实践探索案例,力图将大数据与机器学习相结合 产生新的实践落地思路。 网络上的大数据相关博文多是基于java 或者Scala ,本专栏的目的在于 基于python 将大数据(pyspark、 Elasticsearch、sklearn …),数据开发,与数据分析相结合。 并在实践内容上给出一定指导,最后本专栏特地针对笔试面试高频题方面给出了分享,希望能够在找工作时候帮助到大家。

本专栏持续更新中,内容还未完整的请稍安勿躁,部分内容有参考其他书籍或是网络文献,都会给出原始出处


21 世纪必将是大数据的时代,是智能信息处理的黄金时代。

BAT 公司在 2013年左右的数据量如下:

  • 2013 年百度相关技术报告称,百度数据总量接近 1000PB,网页的数量大是几千亿个,每年更新几十亿个,每天查询次数几十亿次。
  • 2013年腾讯相关技术报告称,腾讯约有8 亿用户,4亿移动用户,总存储数据量经

压缩处理以后在 100PB左右,日新增 200TB 到 300TB,月增加 10%的数据量。

  • 2013年阿里巴巴相关技术报告称,总体数据量为 100PB,每天的活跃数据量已经超过 50TB,共有4亿条产品信息和2 亿多名注册用户,每天访问超过 4000 万人次。

为了采集、存储和分析大数据,互联网公司尝试研发大数据技术,在众多技术方案中,开源系统 Hadoop、 Spark、Elasticsearch等 成为应用最广泛的大数据技术,由于它们的用户量巨大,已经初步成为大数据技术规范。

本专栏《大数据处理实践探索》 通过记录基于Python 的大数据处理实践探索案例,力图将大数据与机器学习相结合 产生新的实践落地思路。 网络上的大数据相关博文多是基于java 或者Scala ,本专栏的目的在于 基于python 将大数据(pyspark、 Elasticsearch、sklearn ...),数据开发,与数据分析相结合。 并在实践内容上给出一定指导,最后本专栏特地针对笔试面试高频题方面给出了分享,希望能够在找工作时候帮助到大家。

本专栏 于 2021年7月20日 正式更名为《大数据机器学习实践探索》,并将主要更新:基于大数据的机器学习最佳实践 中的主要内容,围绕大数据环境下的机器学习,基于spark 给大家介绍最新的大数据机器学习算法。

github 地址: big_data_repo


框架平台介绍篇

大数据尝试从海量数据中,通过一定的分布式技术手段,挖掘出有价值的信息,最终提供给用户,进而产生实用价值和商业价值。由于数据本身的多样性以及数据分析需求的多元化,大数据技术体系非常复杂,涉及的组件和模块众多。

为了便于读者从顶层框架上对大数据有一个清楚的认识,本部分尝试首先概括大数据技术框架。

云平台

通过我和北美工程师的合作,他们将AWS 已经当成了一种基础设置,如果你还不了解云计算,或者任意一家云平台的话,你out 了。 学习云计算或者云平台的途径最好就是通过他们的文档。国内云平台如同雨后春笋般蓬勃发展,但最值得借鉴的还是鼻祖AWS.

安装与调试

本小节主要针对开发环境搭建,集群环境搭建进行介绍

大数据搜索框架 Elasticsearch

Elasticsearch是一个实时的分布式搜索和分析引擎,使得人们可以在一定规模上和一定速度上实现数据检索,常用于全文本检索,结构化检索、分析以及三种的结合应用。Wikipedia、Guardian、Stack Overflow、Github都在使用Elasticsearch实现自己的相关检索工作。

大数据框架 spark

在这里插入图片描述

Spark最初诞生于美国加州大学伯克利分校(UC Berkeley)的AMP实验室,是一个可应用于大规模数据处理的快速、通用引擎。2013年,Spark加入Apache孵化器项目后,开始获得迅猛的发展,如今已成为Apache软件基金会最重要的三大分布式计算系统开源项目之一(即Hadoop、Spark、Storm)。Spark最初的设计目标是使数据分析更快——不仅运行速度快,也要能快速、容易地编写程序。为了使程序运行更快,Spark提供了内存计算,减少了迭代计算时的IO开销;而为了使编写程序更为容易,Spark使用简练、优雅的Scala语言编写,基于Scala提供了交互式的编程体验。虽然,Hadoop已成为大数据的事实标准,但其MapReduce分布式计算模型仍存在诸多缺陷,而Spark不仅具备Hadoop MapReduce所具有的优点,且解决了Hadoop MapReduce的缺陷。Spark正以其结构一体化、功能多元化的优势逐渐成为当今大数据领域最热门的大数据计算平台。

WSL 是 Windows Subsystem for Linux windows下的linux子系统,由于直接在windows 上安装pyspark 跑很多基于linux 的库的机器学习库很费劲,有什么办法是省时省力并且占用资源少的方式呢?相比虚拟机动辄8g 左右的内存占用量,wsl 当然是一个非常好的选择。


数据处理篇

数据接入

数据接入就是对于不同的数据来源、不同的合作伙伴,完成数据采集、数据传输、数据处理、数据缓存到行业统一的数据平台的过程。

数据清洗

数据清洗, 是整个数据分析过程中不可缺少的一个环节,其结果质量直接关系到模型效果和最终结论。在实际操作中,数据清洗通常会占据分析过程的50%—80%的时间。

数据清洗的目的从两个角度来讲:

一、是为了解决数据质量问题
二、是让数据更适合做挖掘、展示、分析

ETL

ETL,是英文Extract-Transform-Load的缩写,用来描述将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程。

EDA

还有比pandas profiling 更好使的python EDA 工具吗?

经典Titanic 数据集的探索性数据分析报告:

特征工程

特征工程的主要目的是放大数据的价值。有这么一句话在业界广泛流传:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已


大数据机器学习篇

在大数据领域中,机器学习几乎无处不在,即便我们没有特意引用它们,它们也经常出现在大数据应用中,例如:搜索、推荐、预测和数据挖掘等。随着互联网的高速发展,数据量不断爆发式增长,数据维度越来越丰富,这也为机器学习的发展和应用提供了良好的土壤,机器学习的良好成果也反向让数据产生更大的价值,成为真正的“大数据”,两者相辅相成,相互促进,让数据越来越智能。


算法原理篇


SQL 优化

sql 优化无处不在,核心可以概括为几点:

  1. 有效使用索引
  2. 根据查询计划持续优化
  3. 构建高效的sql 语句

大数据可视化

一图胜千言,视觉传达的信息量带宽远大于文字。


实践案例篇

基于大数据的数据处理

基于大数据的数据分析

使用pyspark 进行kaggle比赛Give me some credit数据集的建模与分析


笔试面试篇

笔试面试题复习的核心要义是什么? 一言以蔽之,基础+原理。


其他


参考文献

Spark入门教程(Python版)

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
4月前
|
机器学习/深度学习 数据采集 人工智能
AI与机器学习:从理论到实践
【10月更文挑战第2天】本文将深入探讨AI和机器学习的基本概念,以及它们如何从理论转化为实际的应用。我们将通过Python代码示例,展示如何使用机器学习库scikit-learn进行数据预处理、模型训练和预测。无论你是AI领域的初学者,还是有一定基础的开发者,这篇文章都将为你提供有价值的信息和知识。
|
3月前
|
人工智能 JSON 算法
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式、 AI Native 的大模型与 AIGC 工程平台,为开发者和企业客户提供了 Qwen2.5-Coder 系列模型的全链路最佳实践。本文以Qwen2.5-Coder-32B为例,详细介绍在 PAI-QuickStart 完成 Qwen2.5-Coder 的训练、评测和快速部署。
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
|
2月前
|
机器学习/深度学习 数据可视化 大数据
机器学习与大数据分析的结合:智能决策的新引擎
机器学习与大数据分析的结合:智能决策的新引擎
282 15
|
2月前
|
编解码 机器人 测试技术
技术实践 | 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型快速搭建专业领域知识问答机器人
Qwen2-VL是一款具备高级图像和视频理解能力的多模态模型,支持多种语言,适用于多模态应用开发。通过PAI和LLaMA Factory框架,用户可以轻松微调Qwen2-VL模型,快速构建文旅领域的知识问答机器人。本教程详细介绍了从模型部署、微调到对话测试的全过程,帮助开发者高效实现定制化多模态应用。
|
2月前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
84 12
|
1月前
|
人工智能 容灾 Serverless
AI推理新纪元,PAI全球化模型推理服务的创新与实践
本次分享主题为“AI推理新纪元,PAI全球化模型推理服务的创新与实践”,由阿里云高级产品经理李林杨主讲。内容涵盖生成式AI时代推理服务的变化与挑战、play IM核心引擎的优势及ES专属网关的应用。通过LM智能路由、多模态异步生成等技术,PAI平台实现了30%以上的成本降低和显著性能提升,确保全球客户的业务稳定运行并支持异地容灾,目前已覆盖16个地域,拥有10万张显卡的推理集群。
|
2月前
|
机器学习/深度学习 存储 运维
分布式机器学习系统:设计原理、优化策略与实践经验
本文详细探讨了分布式机器学习系统的发展现状与挑战,重点分析了数据并行、模型并行等核心训练范式,以及参数服务器、优化器等关键组件的设计与实现。文章还深入讨论了混合精度训练、梯度累积、ZeRO优化器等高级特性,旨在提供一套全面的技术解决方案,以应对超大规模模型训练中的计算、存储及通信挑战。
143 4
|
3月前
|
人工智能 边缘计算 JSON
DistilQwen2 蒸馏小模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
本文详细介绍在 PAI 平台使用 DistilQwen2 蒸馏小模型的全链路最佳实践。
|
3月前
|
机器学习/深度学习 分布式计算 算法
【大数据分析&机器学习】分布式机器学习
本文主要介绍分布式机器学习基础知识,并介绍主流的分布式机器学习框架,结合实例介绍一些机器学习算法。
592 5
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
探索机器学习:从理论到实践
在这篇文章中,我们将深入探讨机器学习的世界。我们将首先了解机器学习的基本概念和原理,然后通过一个简单的代码示例,展示如何实现一个基本的线性回归模型。无论你是初学者还是有经验的开发者,这篇文章都将帮助你更好地理解和应用机器学习。

热门文章

最新文章