自动选模型+调参:谷歌AutoML背后的技术解析

简介: AutoML 是 Google 最新的产品,能够根据问题自动确定最优参数和网络结构。本文章就关注解析 AutoML 背后的技术,由于 AutoML 缺乏技术文档,我们的解析有不到之处,还请多多更正。

罗马不是一天建成的。AutoML 并非一蹴而就,而是 Google 的研究者在过去几年不断思考中产生的理论与实践结合的完美产物。下图是 Google 的 AutoML 探索之路。

 

微信图片_20211129154606.jpg


人工网络结构搜索(Inception-ResNet 与 Inception V4)


Alexnet 在 IMAGENET 取得冠军之后,Google 意识到了深度学习是未来的趋势,于是投入巨资进行神经网络的研究。从 Deepmind 被收购,Hinton 加入 Google,Tensorflow 的开源中可见 Google 对于 Deep Learning 的重视与远见。Google 在不断的调参数中发现了著名的 Inception 网络,并且结合 ReNet,发现了 Inception-ResNet,V4 和 Xception。这些发现让 Google 注意到了神经网络结构会对结构产生巨大影响,但是找到最优的结构需要耗费大量的人力和物力,并且对于一个新的数据集还需要投入同样的资源搜索合适的结构,这样的人工搜索是不能够 scalable 的。Inception-ResNet 的网络结构请参考论文:https://arxiv.org/pdf/1602.07261.pdf。Inception 系列网络跟 ResNet 的结果比较。


微信图片_20211129154603.jpg


神经网络搜索初探:Neural Architecture Search with Reinforcement Learning(ICLR 2017 Best Paper)


为了增加网络结构搜索的 scalability,Google Residency Program 的成员 Barrret Zoph 在 Quoc Le 的带领下开始了神经网络自动调参的尝试,Neural Architecture Search with Reinforcement Learning 就是对这一工作的总结。该论文获得了 ICLR 2017 的 Best Paper。Barret Zoph 的工作成功在 CIFAR 和 PTB 上面搜索到了 state-of-the-art 的 CNN 和 LSTM 结构,最优 CNN 与 LSTM 结构对比如下:


微信图片_20211129154600.jpg

Barret Zoph 使用强化学习进行网络结构搜索,网络框架图如下图:

 

微信图片_20211129154557.jpg

Controller 是由 RNN 构成能够产生每层网络的 Kernel 大小和 skip connection 的连接,产生了网络结构之后,使用网络结构的准确率作为 Reward function。Controller 会根据 reward function 的反馈进行网络结构调节,最后会得到最优的网络结构。Controller 生成网络结构预测如下图:

 

微信图片_20211129154554.jpg

本篇论文会对 controller 预测的网络进行 SGD 学习,网络收敛之后的准确率为 Reward,然后使用 reinforcement learning 的 policy gradient 进行 controller 权值更新,policy gradient 公式如下:

 

微信图片_20211129154551.jpg

期望值用下面的公式进行近似:


微信图片_20211129154549.jpg

为了保证训练稳定,引入了 baseline,公式如下:

 

微信图片_20211129154545.jpg

为了保证收敛速度,作者引入了 asynchronous 权值更新,在每个 GPU 中分配多个网络结构进行训练,跟 asynchronous reinforcement learning 的 idea 类似。该论文的 distribution 结构如下图:

 

微信图片_20211129154542.jpg


本篇论文能够避免手动调参数,但是得到网络搜索需要 800GPU 搜索几个月的时间,最近 Google 使用 P100 可以在一周左右训练出模型,本论文仅仅在 CIFAR 上面进行实验,在大规模数据集 IMAGENET 上面的使用受限。


Large Scale Evolution of Image Classifiers(ICML 2017)


本篇论文通过 large scale evolution 的办法来搜索最优的神经网络,由于本人能力有限,我们不对这篇论文进行技术解析。该论文的结构搜索过程如下图:

 

微信图片_20211129154539.jpg

有趣的现象是,evolution 搜索偏向于没有 skip connection 的神经网络。通过 evolution 办法搜索到的神经网络比 ResNet 结果好,但是低于 DenseNet,如下图:

 

微信图片_20211129154536.jpg

神经网络搜索技术实用之路探索


为了让结构搜索的工作能够实用,Google 的研究者从 progressive Search,Transferable architecture 和 Bayesian 的角度进行探索,并且取得了进展。


Progressive Neural Architecture Search(PNAS)


本篇论文提出了通过 progressive 的办法进行网络搜索,会比 RL 方法快 2 倍,比 evolution 方法快 5 倍。


与之前的方法不同,本篇论文是在一个网络的基础上面加上新的 cell,然后使用类似与 A*搜索(Branch and Bound)的办法,搜索到最优的网络结构。Progressive 方法示意图如下:

 

微信图片_20211129154532.jpg

PNAS 所使用的 Cell 结构如下:

 

微信图片_20211129154530.jpg


Learning Transferable Architecture for Scalable Image Recognition


本篇论文是集大成者,Barret Zoph 在之前全部技术的基础上面,成功地将自动结构搜索在 IMAEGNET,COCO 等实用性的物体分类和检测任务上面成功运用。结果太 AMAZING 啦。竟然超过了 ResNet-FPN,COCO 物体检测结果如下:

 

微信图片_20211129154525.jpg

微信图片_20211129154514.jpg


Barret Zoph 首先在 CIFAR 上面使用之前的方法搜索出最优 cell,然后将 cell 重复的运用在 IMAGENET 上面(真的就是这么简单有效 >_<)。最优单个 cell 的结构如下图:

 

微信图片_20211129154510.jpg

可能 AutoML 用的就是这种技术吧。


总结


Google 在大规模的调参中发现了手动调参不能够适应大数据时代的需求。于是进行从 reinforcement learning 和 evolution 两个角度进行了自动调参的初探。为了改进网络结构搜索的时间,Google 提出了 Progressive Search 和 Transferable Architecture 的办法。从中我们可以感受到 Google 一步一个脚印的做事方法,希望 AI 公司和个人都能够从中获得一些收益 >_<。

相关文章
|
8月前
|
传感器 人工智能 物联网
穿戴科技新风尚:智能服装设计与技术全解析
穿戴科技新风尚:智能服装设计与技术全解析
680 85
|
8月前
|
人工智能 API 语音技术
HarmonyOS Next~鸿蒙AI功能开发:Core Speech Kit与Core Vision Kit的技术解析与实践
本文深入解析鸿蒙操作系统(HarmonyOS)中的Core Speech Kit与Core Vision Kit,探讨其在AI功能开发中的核心能力与实践方法。Core Speech Kit聚焦语音交互,提供语音识别、合成等功能,支持多场景应用;Core Vision Kit专注视觉处理,涵盖人脸检测、OCR等技术。文章还分析了两者的协同应用及生态发展趋势,展望未来AI技术与鸿蒙系统结合带来的智能交互新阶段。
534 31
|
8月前
|
编解码 监控 网络协议
RTSP协议规范与SmartMediaKit播放器技术解析
RTSP协议是实时流媒体传输的重要规范,大牛直播SDK的rtsp播放器基于此构建,具备跨平台支持、超低延迟(100-300ms)、多实例播放、高效资源利用、音视频同步等优势。它广泛应用于安防监控、远程教学等领域,提供实时录像、快照等功能,优化网络传输与解码效率,并通过事件回调机制保障稳定性。作为高性能解决方案,它推动了实时流媒体技术的发展。
477 5
|
8月前
|
数据采集 机器学习/深度学习 存储
可穿戴设备如何重塑医疗健康:技术解析与应用实战
可穿戴设备如何重塑医疗健康:技术解析与应用实战
322 4
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术如何重塑客服系统?解析合力亿捷AI智能客服系统实践案例
本文探讨了人工智能技术在客服系统中的应用,涵盖技术架构、关键技术和优化策略。通过感知层、认知层、决策层和执行层的协同工作,结合自然语言处理、知识库构建和多模态交互技术,合力亿捷客服系统实现了智能化服务。文章还提出了用户体验优化、服务质量提升和系统性能改进的方法,并展望了未来发展方向,强调其在客户服务领域的核心价值与潜力。
494 6
|
8月前
|
编解码 人工智能 并行计算
基于 Megatron 的多模态大模型训练加速技术解析
Pai-Megatron-Patch 是一款由阿里云人工智能平台PAI 研发的围绕英伟达 Megatron 的大模型训练配套工具,旨在帮助开发者快速上手大模型,打通大模型相关的高效分布式训练、有监督指令微调、下游任务评估等大模型开发链路。本文以 Qwen2-VL 为例,从易用性和训练性能优化两个方面介绍基于 Megatron 构建的 Pai-Megatron-Patch 多模态大模型训练的关键技术
|
8月前
|
监控 负载均衡 安全
静态IP代理与动态IP代理:提升速度与保障隐私的技术解析
本文探讨了静态IP代理和动态IP代理的特性和应用场景。静态IP代理通过高质量服务提供商、网络设置优化、定期更换IP与负载均衡及性能监控提升网络访问速度;动态IP代理则通过隐藏真实IP、增强安全性、绕过封锁和提供独立IP保障用户隐私。结合实际案例与代码示例,展示了两者在不同场景下的优势,帮助用户根据需求选择合适的代理服务以实现高效、安全的网络访问。
294 1
|
8月前
|
机器学习/深度学习 数据采集 自然语言处理
基于Python的情感分析与情绪识别技术深度解析
本文探讨了基于Python的情感分析与情绪识别技术,涵盖基础概念、实现方法及工业应用。文中区分了情感分析与情绪识别的核心差异,阐述了从词典法到深度学习的技术演进,并通过具体代码展示了Transformers架构在细粒度情感分析中的应用,以及多模态情绪识别框架的设计。此外,还介绍了电商评论分析系统的构建与优化策略,包括领域自适应训练和集成学习等方法。未来,随着深度学习和多模态数据的发展,该技术将更加智能与精准。
505 1
|
8月前
|
负载均衡 JavaScript 前端开发
分片上传技术全解析:原理、优势与应用(含简单实现源码)
分片上传通过将大文件分割成多个小的片段或块,然后并行或顺序地上传这些片段,从而提高上传效率和可靠性,特别适用于大文件的上传场景,尤其是在网络环境不佳时,分片上传能有效提高上传体验。 博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
8月前
|
缓存 算法 Oracle
深度干货 | 如何兼顾性能与可靠性?一文解析YashanDB主备高可用技术
数据库高可用(High Availability,HA)是指在系统遇到故障或异常情况时,能够自动快速地恢复并保持服务可用性的能力。如果数据库只有一个实例,该实例所在的服务器一旦发生故障,那就很难在短时间内恢复服务。长时间的服务中断会造成很大的损失,因此数据库高可用一般通过多实例副本冗余实现,如果一个实例发生故障,则可以将业务转移到另一个实例,快速恢复服务。

推荐镜像

更多
  • DNS