第四范式首席研究科学家陈雨强:机器学习模型,宽与深的大战

简介: 5 月 27 日,机器之心主办的为期两天的全球机器智能峰会(GMIS 2017)在北京 898 创新空间顺利开幕。

5 月 27 日,机器之心主办的为期两天的全球机器智能峰会(GMIS 2017)在北京 898 创新空间顺利开幕。中国科学院自动化研究所复杂系统管理与控制国家重点实验室主任王飞跃为本次大会做了开幕式致辞,他表示:「我个人的看法是再过几年,我们 90% 的工作是人工智能提供的,就像我们今天大部分工作是机器提供的一样。我们知道人工智能会给我们提供一个更美好的未来。」大会第一天重要嘉宾「LSTM 之父」Jürgen Schmidhuber、Citadel 首席人工智能官邓力、腾讯 AI Lab 副主任俞栋、英特尔 AIPG 数据科学部主任 Yinyin Liu、GE Transportation Digital Solutions CTO Wesly Mukai 等知名人工智能专家参与峰会,并在主题演讲、圆桌论坛等互动形式下,从科学家、企业家、技术专家的视角,解读人工智能的未来发展。

微信图片_20211128190452.jpg

下午,第四范式联合创始人、首席研究科学家陈雨强发表了主题为《机器学习模型:宽与深的大战》的演讲,他不仅探讨分享了学界中的深度模型和工业界中的宽度模型,同时还分析了这两种模型的各自特点。以下是该演讲的主要内容:


工业界需要可扩展的机器学习系统


人工智能的兴起是计算能力、机器学习以及分布式计算发展的结果。在实际的工业界之中,我们需要一个可扩展的机器学习系统(Scalable Machine Learning System),而不仅仅是一个可扩展系统(Scalable System)。


微信图片_20211128190456.jpg

第一点,数据处理的能力随机器的增加而增加,这是传统的可扩展。第二点,智能水平和体验壁垒要随着业务、数据量的增加而同时增加。这个角度的 Scalable 是很少被提到的,但这个层面上的可扩展性才是人工智能被推崇的核心原因。


比如,过去建立竞争壁垒主要通过业务创新或是通过借助新的渠道(比方说互联网)提升效率。在这样的方式中,由于产品本身相对容易被抄袭,那么资本投入、运营与渠道是关键。但随着数据的增加与 AI 的普及,现在有了一种新的方式,就是用时间与数据创造壁垒。可以看出,由人工智能产生的竞争壁垒是不断循环迭代而得到提升、更容易拉开差距的高墙。


可扩展的机器学习系统需要高 VC 维


我们知道 VC 维理论,该理论形式化地描述了机器学习算法对复杂函数拟合的能力。在机器学习中,VC 维度越高,模型越复杂,所需要的数据量也越多。


微信图片_20211128190459.jpg


如上图所示,因为过去的数据不大,训练损失函数在不断下降,而测试损失函数则先下降再上升。因此有小数据量的模型要避免过拟合,VC 维就不能太高。因此我们需要控制 VC 维,以让训练数据的测试损失和训练损失同时下降。


但随着如今数据量剧增,我们发现低 VC 维模型效果并不理想,但高的 VC 维模型的性能在不断上升。因此,在我们有越来越多数据时,要关心的是欠拟合而不是过拟合,要关心的是怎样提高 VC 维让模型更加聪明。


因此,如果要成功在工业界使用人工智能,VC 维是非常重要的问题。


如果我们已经有很多数据,那么提升 VC 维的方法有两条:一种是从特征提升,一种是从模型提升。我们把特征分为两类:一类特征叫宏观特征,比如描述类特征如年龄、统计类特征如整体的点击率、或整体的统计信息;另一类为微观特征,最典型的是 ID 类的特征,每个人都有特征,每个物品也有特征,人和物品组合也有特征。相应的模型也分为两类,一部分是简单模型如线性模型,另一类是复杂模型如深度学习模型。因此,我们可以引出工业界机器学习四个象限的概念。


模型 X 特征,工业界机器学习的四个象限


微信图片_20211128190503.jpg


如上图所示,第一象限是简单模型加宏观特征,在现在的工业界比较难以走通,很难得到极致化的优化效果。这个象限内,要解决的问题是怎样找出特征之间的关系与各自的统计特性。


第二象限是简单模型加复杂特征,最成功的典型案例是 Google AdWords。Google AdWords 占 Google 70% 以上的收入,Google 的展示广告也是用的这样的技术,占了 Google 大概剩下的 20% 左右的收入。


第三象限是复杂模型、宏观特征典型的应用,比如 Bing ads,2013 年他们提出 BPR(Bayesian Probit Regression)来 Model 每个特征的置信度。


第四象限,复杂模型和微观特征,现在还是热门研究的领域,它最难的一点是模型的规模实在太大。这种模型可能会有极其巨量的参数。虽然数据很多,但如此多的参数还是很难还是难以获得的。所以怎么解决模型的复杂问题、正则化问题,还是目前研究的重要方向。


如何沿着模型优化?


沿着模型优化主要由学术界主导。他们主要的研究是非线性模型,总结起来有三种方法:核函数、提升方法和深度神经网络。提升方法和深度神经网络现在非常流行,提升方法最经典的是梯度提升树(GBDT),而深度神经网络也在很多行业产生了颠覆性的变化。大约十年前,核函数也是很流行的。借助核函数,支持向量机(SVM)有了异常强大的非线性能力。


对于工业界中的具体问题,基于思考或观察得到新的假设,加入新的模型、结构,以获得更多的参数,这是工业界优化这一项限的步骤。


因此,通过机器学习首先,观察数据;第二,找到规律;第三,根据规律做模型的假设;第四,对模型假设中的参数用数据进行拟合;第五,把拟合的结果用到线上,看看效果怎么样。这是模型这条路在工业界上优化的方法。


如何沿特征优化?


特征优化主要是工业界主导的。就像刚才提到的,Google 使用了上千亿的特征,百度也使用了上千亿的特征,这些特征都是从最细的角度描述数据,模型也是简单粗暴。


沿模型优化这条路的主要特点是什么?模型一定是分布式的,同时工程挑战是非常大的。针对这些难点,很多会议上都在研究如何高效并行,以及如何保证高效并行的时候快速收敛。ASP、BSP 等模型和同步、异步的算法,都是为了保证高效分布式的同时能快速收敛。


应为线性模型理论较为成熟,工业界对模型本身的优化相对没有那么多,其更主要的工作是针对具体的应用提取特征。之所以有那么多特征,是因为我们对所有观察到的微观变量都进行建模。


所以,当我们不能给出比较好的数据假设时,不知道为什么产生突变时,可以更多的依赖数据,用潜在参数建模可能性,通过数据学到该学的知识。


宽度还是深度?


那么沿着宽度走好还是沿着深度走好?其实并没有那个模型在所有情况下都更好,换一句话说机器学习没有免费的午餐(No Free-Lunch):不存在万能模型。


微信图片_20211128190508.jpg


没有免费午餐定理,即所有的机器学习都是一个偏置,这个偏置是代表你对于数据的假设,偏置本身不会有谁比谁更好这样的概念。如果使用更多的模型假设,就需要更少的数据,但如果模型本身越不符合真实分布,风险就越大。当然我们也可以使用更少的模型假设,用数据支持模型,但你需要更多的数据支持,更好的特征刻画,然后表示出分布。总结起来对于我们工业界来说,机器学习并没有免费的午餐,一定要做出对业务合适的选择。


宽与深的大战


微信图片_20211128190511.jpg

追求更高的 VC 维有两条路:一个是走宽的、离散的那条路,即 Google AdWords 的道路;也可以走深的那条路,比如深度学习。这就是深与宽的大战,因为宽与深在工业界都有非常成功的应用案例,坚信宽与深的人很长一段时间是并不互相理解的。坚信深度学习、复杂模型的人认为,宽的道路模型太简单了,20 年就把所有的理论研究透彻,没有什么更多的创新,这样的技术不可能在复杂问题上得到好的结果。坚信宽的模型的人,攻击深度模型在某些问题上从来没有真正把所有的数据都用好,从来没有发挥出数据全部的价值,没有真正的做到特别细致的个性化。的确深度模型推理做得好,但个性化、记忆方面差很多。


宽与深的模型并没有谁比谁好,这就是免费午餐定理:不同业务使用不同的模型,不同的模型有不同的特点。我们对比一下宽度模型与深度模型:宽度模型有比较准确的记忆能力,深度模型有比较强的推理能力;宽度模型可以说出你的历史,在什么情况下点过什么广告,深度模型会推理出下次你可能喜欢哪一类东西。宽度模型是依靠层次化特征进行泛化的,有很强的解释性,虽说特征很多,但是每一个预估、为什么有这样的预估、原因是什么,可以非常好的解释出来;深度模型是非常难以解释的,你很难知道为什么给出这样的预估。宽度模型对平台、对工程要求非常高,需要训练数据非常多、特征非常多;深度模型对训练数据、对整个模型要求相对较低一点,但现在也是越来越高的。还有一个非常关键的区别点,如果你是 CEO、CTO,你想建一个机器学习的系统与团队,这两条路有非常大的区别。宽度模型可以比较方便与统一的加入业务知识,所以优化宽度模型的人是懂机器学习并且偏业务的人员,把专业的知识加入建模,其中特征工程本身的创新是提升的关键;如果走深度模型,模型的创新是关键,提升模型更关键来自于做 Machine Learning 的人,他们从业务获得知识并且得到一些假设,然后把假设加入模型之中进行尝试。


微信图片_20211128190514.jpg

同时宽与深的结合已经逐渐成为一个研究热点,Google 在 16 年 4 月份发表的一篇论文,介绍他们的最新工作「Deep & Wide Model」。模型分为 Deep 与 Wide 两部分,好处是它既能对比较细的特征有记忆,同时也有推理的能力。我们认为将来的方向都应该朝这路走。


除此之外,近期还有不少工作在探索这个方向,总的来说这方面还是非常前沿的、非常热门的研究领域。


如何上线:从监督学习到强化学习


不管是宽模型、深模型还是兼顾宽与深的模型,其实线下做好的模型实际上是一个监督学习模型,并不能保证它线上效果好。


微信图片_20211128190517.jpg

再跟大家分享一点,宽度和深度其实是两条路数、两个派系。在我们想替换的时候,就会发现深度模型很难把它替换成宽度模型,或者宽度模型很难把它替换成深度模型。因为如果我们真正把它应用于线上系统时,其实是一个强化学习问题,而不只是简单的机器学习问题。你在线上使用的时候会发现,你碰到的数据和你线下训练的数据是不一样的,你的基线模型效果越好,你的数据是越有偏差,训练出来的模型越难真正在线上产生好的效果。所以说,我们需要有很多机制让这个事情做得更好,包括更多的强化学习等方式。


最后总结一下,深度学习和宽度学习,其实并没有谁比谁一定更好,我们要针对具体的业务,选择最合适你的机器学习框架、机器学习模型来解决我们的问题。


更多有关GMIS 2017大会的内容,请点击「阅读原文」查看机器之心官网 GMIS 专题↓↓↓

微信图片_20211128190520.jpg

相关文章
|
2月前
|
人工智能 JSON 算法
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式、 AI Native 的大模型与 AIGC 工程平台,为开发者和企业客户提供了 Qwen2.5-Coder 系列模型的全链路最佳实践。本文以Qwen2.5-Coder-32B为例,详细介绍在 PAI-QuickStart 完成 Qwen2.5-Coder 的训练、评测和快速部署。
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
|
22天前
|
编解码 机器人 测试技术
技术实践 | 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型快速搭建专业领域知识问答机器人
Qwen2-VL是一款具备高级图像和视频理解能力的多模态模型,支持多种语言,适用于多模态应用开发。通过PAI和LLaMA Factory框架,用户可以轻松微调Qwen2-VL模型,快速构建文旅领域的知识问答机器人。本教程详细介绍了从模型部署、微调到对话测试的全过程,帮助开发者高效实现定制化多模态应用。
|
2月前
|
机器学习/深度学习 PyTorch API
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
Transformer架构自2017年被Vaswani等人提出以来,凭借其核心的注意力机制,已成为AI领域的重大突破。该机制允许模型根据任务需求灵活聚焦于输入的不同部分,极大地增强了对复杂语言和结构的理解能力。起初主要应用于自然语言处理,Transformer迅速扩展至语音识别、计算机视觉等多领域,展现出强大的跨学科应用潜力。然而,随着模型规模的增长,注意力层的高计算复杂度成为发展瓶颈。为此,本文探讨了在PyTorch生态系统中优化注意力层的各种技术,
72 6
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
|
30天前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
48 12
|
2月前
|
机器学习/深度学习 Python
机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况
本文介绍了机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况,而ROC曲线则通过假正率和真正率评估二分类模型性能。文章还提供了Python中的具体实现示例,展示了如何计算和使用这两种工具来评估模型。
63 8
|
2月前
|
机器学习/深度学习 Python
机器学习中模型选择和优化的关键技术——交叉验证与网格搜索
本文深入探讨了机器学习中模型选择和优化的关键技术——交叉验证与网格搜索。介绍了K折交叉验证、留一交叉验证等方法,以及网格搜索的原理和步骤,展示了如何结合两者在Python中实现模型参数的优化,并强调了使用时需注意的计算成本、过拟合风险等问题。
64 6
|
2月前
|
机器学习/深度学习 数据采集 算法
从零到一:构建高效机器学习模型的旅程####
在探索技术深度与广度的征途中,我深刻体会到技术创新既在于理论的飞跃,更在于实践的积累。本文将通过一个具体案例,分享我在构建高效机器学习模型过程中的实战经验,包括数据预处理、特征工程、模型选择与优化等关键环节,旨在为读者提供一个从零开始构建并优化机器学习模型的实用指南。 ####
|
2月前
|
人工智能 边缘计算 JSON
DistilQwen2 蒸馏小模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
本文详细介绍在 PAI 平台使用 DistilQwen2 蒸馏小模型的全链路最佳实践。
|
2月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的线性回归模型
本文深入探讨了机器学习中广泛使用的线性回归模型,从其基本概念和数学原理出发,逐步引导读者理解模型的构建、训练及评估过程。通过实例分析与代码演示,本文旨在为初学者提供一个清晰的学习路径,帮助他们在实践中更好地应用线性回归模型解决实际问题。
|
2月前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
如何使用机器学习模型来自动化评估数据质量?