js: 字符(字母) 与 ASCII码 转换方法

简介: js: 字符(字母) 与 ASCII码 转换方法

js: 字符(字母) 与 ASCII码 转换方法

字母ASCII码值

大写字母 :

A-Z 65-90

小写字母 :

a-z 97-122


##字符 与 ASCII码值 之间的转换

// 字符 —> ASCII码值
'A'.charCodeAt()
65
// ASCII码值—>字符
String.fromCharCode(65);
"A"

参考

JS 字符(字母) 与 ASCII码 转换方法

相关文章
|
5月前
|
机器学习/深度学习 JSON 监控
国内最大的MCP中文社区来了,4000多个服务等你体验
国内最大的MCP中文社区MCPServers来了!平台汇聚4000多个服务资源,涵盖娱乐、监控、云平台等多个领域,为开发者提供一站式技术支持。不仅有丰富的中文学习资料,还有详细的实战教程,如一键接入MCP天气服务等。MCPServers专注模块稳定性和实用性,经过99.99% SLA认证,是高效开发的理想选择。立即访问mcpservers.cn,开启你的开发之旅!
5539 16
|
SQL 数据库 数据库管理
如何使用Navicat导出数据?
【8月更文挑战第28天】如何使用Navicat导出数据?
3374 6
|
8月前
|
机器学习/深度学习 自然语言处理 搜索推荐
自注意力机制全解析:从原理到计算细节,一文尽览!
自注意力机制(Self-Attention)最早可追溯至20世纪70年代的神经网络研究,但直到2017年Google Brain团队提出Transformer架构后才广泛应用于深度学习。它通过计算序列内部元素间的相关性,捕捉复杂依赖关系,并支持并行化训练,显著提升了处理长文本和序列数据的能力。相比传统的RNN、LSTM和GRU,自注意力机制在自然语言处理(NLP)、计算机视觉、语音识别及推荐系统等领域展现出卓越性能。其核心步骤包括生成查询(Q)、键(K)和值(V)向量,计算缩放点积注意力得分,应用Softmax归一化,以及加权求和生成输出。自注意力机制提高了模型的表达能力,带来了更精准的服务。
|
机器学习/深度学习 算法 开发工具
大语言模型的直接偏好优化(DPO)对齐在PAI-QuickStart实践
阿里云的人工智能平台PAI,作为一站式的机器学习和深度学习平台,对DPO算法提供了全面的技术支持。无论是开发者还是企业客户,都可以通过PAI-QuickStart轻松实现大语言模型的DPO对齐微调。本文以阿里云最近推出的开源大型语言模型Qwen2(通义千问2)系列为例,介绍如何在PAI-QuickStart实现Qwen2的DPO算法对齐微调。
|
计算机视觉
【YOLOv10训练教程】如何使用YOLOv10训练自己的数据集并且推理使用
【YOLOv10训练教程】如何使用YOLOv10训练自己的数据集并且推理使用
|
固态存储
【YOLO系列】YOLOv10模型结构详解与推理部署实现
【YOLO系列】YOLOv10模型结构详解与推理部署实现
2170 0
|
6天前
|
人工智能 运维 安全
|
4天前
|
人工智能 异构计算
敬请锁定《C位面对面》,洞察通用计算如何在AI时代持续赋能企业创新,助力业务发展!
敬请锁定《C位面对面》,洞察通用计算如何在AI时代持续赋能企业创新,助力业务发展!
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
B站开源IndexTTS2,用极致表现力颠覆听觉体验
在语音合成技术不断演进的背景下,早期版本的IndexTTS虽然在多场景应用中展现出良好的表现,但在情感表达的细腻度与时长控制的精准性方面仍存在提升空间。为了解决这些问题,并进一步推动零样本语音合成在实际场景中的落地能力,B站语音团队对模型架构与训练策略进行了深度优化,推出了全新一代语音合成模型——IndexTTS2 。
529 14