10万亿!达摩院发布全球最大AI预训练模型M6

简介: 今天,阿里巴巴达摩院公布多模态大模型M6最新进展,其参数已从万亿跃迁至10万亿,成为全球最大的AI预训练模型。

今天,阿里巴巴达摩院公布多模态大模型M6最新进展,其参数已从万亿跃迁至10万亿,成为全球最大的AI预训练模型。

M6是达摩院研发的通用性人工智能大模型,拥有多模态、多任务能力,尤其擅长设计、写作、问答,在电商、制造业、文学艺术、科学研究等领域有广泛应用前景。

与传统AI相比,大模型拥有成百上千倍“神经元”数量,认知和创造能力也更胜一筹,被普遍认为是未来的“基础模型”。但大模型的算力成本相当高昂,训练1750亿参数语言大模型GPT-3所需能耗,相当于汽车行驶地月往返距离。

今年5月,通过专家并行策略及优化技术,达摩院M6团队将万亿模型能耗降低超八成、效率提升近11倍。

10月,M6再次突破业界极限,使用512 GPU在10天内即训练出具有可用水平的10万亿模型。相比去年发布的大模型GPT-3,M6实现同等参数规模,能耗仅为其1%。

image.png

将10万亿参数放进512张GPU

模型扩展到千亿及以上参数的超大规模时,将很难放在一台机器上。

为了帮助多模态预训练模型进行快速迭代训练,达摩院在阿里云PAI自研Whale框架上搭建MoE模型,并通过更细粒度的CPU offload技术,最终实现将10万亿参数放进512张GPU:

  • 自研Whale框架:自研Whale分布式深度学习训练框架,针对数据并行、模型并行、流水并行、混合并行等多种并行模型进行了统一架构设计,让用户在仅仅添加几行API调用的情况下就可以实现丰富的分布式并行策略。
  • MoE专家并行策略:在Whale架构中实现Mixture-of-Experts(MoE)专家并行策略,在扩展模型容量、提升模型效果的基础上,不显著增加运算FLOPs(每秒所执行的浮点运算次数),从而实现高效训练大规模模型的目的。
  • CPU offload创新技术:在自研的分布式框架Whale中通过更细粒度的CPU offload,解决了有限资源放下极限规模的难题,并通过灵活地选择offload的模型层,进一步地提高GPU利用率。

训练速度大幅度提升

此外,针对训练效率问题,M6团队设计了Pseudo-to-Real(共享解除)机制,即利用训练好的共享参数模型初始化大模型,让收敛效率进一步提升7倍,解决大模型训练速度慢的问题。

对比不使用该机制,预训练达到同样loss用时仅需6%;和此前万亿模型相比,训练样本量仅需40%。

image.png

作为国内首个商业化落地的多模态大模型,M6已在超40个场景中应用,日调用量上亿。

今年,大模型首次支持双11,应用包括但不限于:

  • M6在犀牛智造为品牌设计的服饰已在淘宝上线;
  • 凭借流畅的写作能力,M6正为天猫虚拟主播创作剧本;
  • 依靠多模态理解能力,M6正在增进淘宝、支付宝等平台的搜索及内容认知精度。

image.png

M6设计的飞行汽车

未来,M6将积极探索与科学应用的结合,通过AI for science让大模型的潜力充分发挥,并加强M6与国产芯片的软硬一体化研究。

达摩院智能计算实验室负责人周靖人表示:

“接下来,我们将深入研究大脑认知机理,致力于将M6的认知力提升至接近人类的水平;另一方面,还将不断增强M6在不同场景中的创造力,产生出色的应用价值。”

目前,达摩院联合阿里云已推出M6服务化平台(https://m6.aliyun.com),为大模型训练及应用提供完备工具,首次让大模型实现“开箱即用”,算法人员及普通用户均可方便地使用平台。

备注:来源| 阿里云公众号

相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
相关文章
|
3月前
|
云安全 人工智能 自然语言处理
阿里云x硅基流动:AI安全护栏助力构建可信模型生态
阿里云AI安全护栏:大模型的“智能过滤系统”。
1837 120
|
4月前
|
人工智能 自然语言处理 IDE
模型微调不再被代码难住!PAI和Qwen3-Coder加速AI开发新体验
通义千问 AI 编程大模型 Qwen3-Coder 正式开源,阿里云人工智能平台 PAI 支持云上一键部署 Qwen3-Coder 模型,并可在交互式建模环境中使用 Qwen3-Coder 模型。
830 109
|
4月前
|
人工智能 Java API
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
本文介绍AI大模型的核心概念、分类及开发者学习路径,重点讲解如何选择与接入大模型。项目基于Spring Boot,使用阿里云灵积模型(Qwen-Plus),对比SDK、HTTP、Spring AI和LangChain4j四种接入方式,助力开发者高效构建AI应用。
1786 122
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
|
3月前
|
人工智能 搜索推荐 程序员
当AI学会“跨界思考”:多模态模型如何重塑人工智能
当AI学会“跨界思考”:多模态模型如何重塑人工智能
324 120
|
4月前
|
人工智能 监控 Kubernetes
稳定支撑大规模模型调用,携程旅游的 AI 网关实践
为了进一步提升服务水平和服务质量,携程很早就开始在人工智能大模型领域进行探索。而随着工作的深入,大模型服务的应用领域不断扩大,公司内部需要访问大模型服务的应用也越来越多,不可避免的就遇到了几个问题,我们自然就会想到使用网关来对这些服务接入进行统一管理,并增加各种切面上的流量治理功能。
403 42
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
734 13
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
|
3月前
|
机器学习/深度学习 人工智能 JSON
PHP从0到1实现 AI 智能体系统并且训练知识库资料
本文详解如何用PHP从0到1构建AI智能体,涵盖提示词设计、记忆管理、知识库集成与反馈优化四大核心训练维度,结合实战案例与系统架构,助你打造懂业务、会进化的专属AI助手。
307 6
|
4月前
|
人工智能 负载均衡 API
Vercel 发布 AI Gateway 神器!可一键访问数百个模型,助力零门槛开发 AI 应用
大家好,我是Immerse,独立开发者、AGI实践者。分享编程、AI干货、开源项目与个人思考。关注公众号“沉浸式趣谈”,获取独家内容。Vercel新推出的AI Gateway,统一多模型API,支持自动切换、负载均衡与零加价调用,让AI开发更高效稳定。一行代码切换模型,告别接口烦恼!
473 1
Vercel 发布 AI Gateway 神器!可一键访问数百个模型,助力零门槛开发 AI 应用