机器之心选出2015年人工智能五大关键词

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
图像搜索,7款服务类型 1个月
NLP自然语言处理_高级版,每接口累计50万次
简介: 机器之心梳理出五个关键词:开源、创业、巨头、产品、争议。站在2015年的年末,和大家一起回首人工智能领域这一年的发展与进步。

在即将过去的2015年里,几乎每天都能听到关于「人工智能」的新消息,或是大公司新产品发布、或是创业公司拿到巨资、或是研究机构探讨人工智能如何人类相处等等。Bloomberg将2015年评价为人工智能的里程碑一年,因为「计算机变得更加聪明,它们的学习也达到了前所未有的速度。」


机器之心梳理出五个关键词:开源、创业、巨头、产品、争议。站在2015年的年末,和大家一起回首人工智能领域这一年的发展与进步。

1开源与话语权之争


正如谷歌董事长施密特所言:「机器学习并不是魔术,它只是个工具而已。」过去一年,我们看到越来越多公司将自己的机器学习技术作为工具开放给全球开发者使用。一方面,人工智能的发展离不开全球各地开发者的积极参与,而开源将成为吸引开发者的重要途径。另一方面,利用开源争夺人工智能的话语权,也成为巨头们积极开源的重要原因。


2015年11月,谷歌开源了一个名叫TensorFlow的机器学习平台,全球各地的开发者和爱好者都可以免费使用这个平台,作为谷歌第二代人工智能系统,TensorFlow的命名起源于该系统的运作原理,即复杂的数据结构(Tensor)将会被传输至人工智能神经网中进行分析和处理,这一过程是机器深度学习的核心部分。


谷歌此举被业界广泛解读为「欲复制人工智能领域的Android」。事实上,早在今年1月,Facebook人工智能研究院(FAIR)就推出一组基于Torch机器学习框架的开源深度学习工具。Torch是一个从2002年就开始存在的开源库,已被Google、Twitter、Intel、AMD、NVIDIA等公司采用。Facebook的开源工具将有助于提升神经网络性能,并可英语用于计算机视觉和自然语言处理(NLP)。


早已将人工智能作为公司核心战略的Facebook并没有停止开源步伐。2015年12月,Facebook宣布开源针对神经网络研究的服务器「Big Sur」,这款服务器装配有高性能图形处理单元(GPUs),是专为深度学习方向设计的芯片。


传统的IT巨头也没有闲着。就在谷歌开源TensorFlow不久,微软亚洲研究院于将分布式机器学习工具包(DMTK)通过Github开源。这个工具包由一个服务于分布式机器学习的框架和一组分布式机器学习算法构成,可将机器学习算法运用到大数据。同样也是在11月,IBM 宣布开源旗下机器学习平台SystemML,这个平台由 IBM 的 Almaden 实验室近 10年 前开发,可支持描述性分析、分类、聚类、回归、矩阵分解及生存分析等算法,IBM 沃森就整合了其中多项技术。


这些下半年尤其是11月份之后出现的开源热潮令人眼花缭乱。但上半年的另一家公司的开源产品却被很多人忽视,这就是亚马逊的机器学习平台。2015年4月,亚马逊推出Amazon Machine Learning(亚马逊机器学习),这是一项全面的托管服务,让任何开发者都能够轻松使用历史数据开发并部署预测模型。亚马逊内部一直使用机器学习过滤商品下方的垃圾评论、通过注册姓名来辨别用户的男女性别,以及训练分拣机器人对不同形状物品的识别等等,这些功能将通过AWS云服务提供给开发者。


如果说基于硬件服务器的机器学习还有一定的门槛,那么基于云计算机器学习服务则在部署和维护方面提供了较大便利性。


2创业起步期


2015年人工智能投资有多热呢?风险投资人 Nathan Benaich在12月1日伦敦Re.Work大会深度学习讨论时透露了一些数字:从2015年1月1日到2015年12月1日,约有300笔涉及到人工智能领域的投资,80%的投资少于500万美元;90%的现金投资发生在美国,欧洲只有13%;75%的多轮融资发生在美国。


而根据 Venture Scanner追踪分析855家人工智能创业公司的数字显示,这个领域的创业公司横跨十三个品类,总估值超过87亿美金。


如果以全球整体风险投资情况来看,人工智能领域的投资比例大约只为5%。这些数字都表明:整个人工智能领域的创业融资还处在早期,绝大多数的人工智能创业公司还没有成型的产品或停留在产品测试阶段。


不过,2015年我们还是看到了一些很酷的人工智能创业公司。


加拿大多伦多大学Brendan Frey教授实验室于今年夏天创立的Deep Genomics刚刚在11月宣布完成370万美元的种子轮融资。这家公司通过深度学习技术筛选海量以前未知的基因突变,找出致病的基因突变。


成立于2010年的人工智能公司Vicarious在2015年8月完成新一轮融资。Vicarious是一家「野心勃勃」的创业公司,他们要「复制大脑皮层功能,控制人的身体,理解语言并进行数学计算。该公司吸引到硅谷诸多大佬的青睐,其投资人包括亚马逊CEO贝佐斯、Facebook CEO 扎克伯格、Salesforce CEO Marc Benioff以及企业云服务Box公司 CEO Aaron Levie。


而一向对深度学习嗤之以鼻的Geometric Intelligence创始人Gary Marcus则相信蹒跚幼童的学习和推理方式中蕴含着让机器更加智能的秘密,但他的产品还未问世。同样还未有产品的旧金山的机器学习创业公司Osaro完成了330万美元融资,投资者包括Peter Thiel、Sean Parker等硅谷知名人士(机构)。该公司成立于2015年年初,公司员工只有9人。Osaro公司的技术强调将用于图像识别的感知技术于计算机和机器的决策能力整合起来,帮助计算机通过试验(错)来提升机器智能。


崇尚「软件吃掉世界」的 Andreessen Horowitz则给一家上线不到5个月的Gigster 1000万美元投资。这家公司提供一种全新的软件开发体验:从客户一个想法到一个App之间的转换是基于其强大的人工智能引擎,它可以将客户的产品需求转化为开发计划,企业外部大量开发者可以根据这个开发计划,将已经预置好的代码模块进行累加和调整优化,从而快速「生产」出一个App。


在国内市场,2015年10月,人工智能创业公司出门问问宣布完成谷歌投资的C轮融资,出门问问估值3亿美金。截至本轮融资,出门问问自成立之日起已经获得了7500万美元的融资。谷歌副总裁Don Harrison认为,出门问问在语音识别和自然语言处理方面有着较强的技术积累。同时出门问问丰富的本土化合作伙伴喜欢也成为谷歌风险投资的重要原因。


同样也是在10月份,通过人工智能为企业预测潜在客户的公司 EverString 完成B轮融资。该公司利用企业内部销售数据,结合每天动态变化的全球新闻数据、企业公告数据、社交媒体等外部数据,来进行认知运算,为企业预测潜在客户。


3巨头们买买买


2015年人工智能领域的买买买虽不及去年DeepMind「嫁给」谷歌那般惹人眼球,但巨头们一直紧盯市场上的猎物,从技术、人才的收购成为巨头们快速布局加强人工智能领域的重要手段。


尽管较早推出Siri这样的虚拟助理产品,但苹果公司过去几年并未在人工智能领域有太大进步。根据LinkedIn的一份数字,苹果公司对于机器学习相关职位的需求也是硅谷各大公司里最少的,但今年这种情况似乎在改变,苹果在2015年完成多笔收购。


微信图片_20211125221310.jpg


2015年10月,苹果公司收购了一家来自英国剑桥地区的人工智能创业公司VocalIQ。这家公司开发了一款基于深度学习的人机语音交互的软件,用户可以很自然地与计算机进行沟通,而且用户使用越多其精确性也越高,这恰恰也是包括Siri在内的多个人工数字助理所研究的领域。目前,该公司的产品主要面向汽车领域。


不到一周,苹果又买下了一家名叫Perceptio的人工智能创业公司,该公司的两位创始人Nicolas Pinto、Zak Stone都是图像识别领域的专家,他们利用深度学习技术不断提升图像识别的准确度。


不过,苹果已连续两年缺席人工智能界最重要的盛会——神经信息处理系统会议(NIPS),公开资料显示该公司至今也从未发表人工智能领域的论文。而且相比与谷歌、Facebook这样的互联网公司,以硬件见长的苹果公司在人工智能领域有着浓厚的「苹果特色」。比如苹果收购的Perceptio公司的产品就是一套不需要太多外部数据的图像识别系统,这和谷歌基于深度学习的图像识别研究方法并不相同。


IBM在过去一年继续利用收购提升沃森的「技能」。2015年3月,IBM收购了AlchemyAPI。AlchemyAPI能够利用深度学习人工智能,搜集企业、网站、广告主发行的图片、文字等信息,并做出相应的文本、数据分析。这些技术对于IBM 沃森意义重大,而且对于转型困境中的IBM来说,「AlchemyAPI 能运行深度学习,而收购AlchemyAPI对于IBM来说,是IBM区别其他云端服务提供商的关键所在。」IBM CEO Elliot Turner 如是说道。


2015年对谷歌来说也是特别的一年,公司架构调整后,母公司Alphabet开始将诸多前沿技术研究并入到新的Google X。2015年10月,谷歌继续在欧洲「淘金」,重金投资了「德国人工智能研究中心」(the DFKI, German Research Centre for Artificial Intelligence)。这是一家非盈利的研究机构,拥有450名科学家,主要研究项目着眼于语言技术、嵌入式智能、增强现实、知识管理、多媒体分析和数据挖掘。这是该领域最大的研究中心之一,2015的预算高达4100万欧元(相当于4600万美元)。


2015年2月,Uber在匹兹堡建立起自己的前沿技术中心(Advanced Technologies Center ),继续扩张势力版图,进军机器人领域。除了研发更好的地图、安全驾驶系统,最有利可图的就是Uber的自动驾驶汽车。而到了2015年夏天,Uber从引领全球机器人发展方向、由卡耐基梅隆大学掌管的美国国家机器人工程中心(National Robotics Engineering Center at Carnegie Mellon University)挖走了40多名研究人员,包括多名资深高级研究人员


在「摩尔定律」半百之际,芯片巨人英特尔收购了一家人工智能公司 Saffron Technology,该公司前IBM知识管理和智能代理中心首席科学家Manuel Aparicio创立,专注于研发自家的「联想记忆」技术,在企业级市场成绩斐然。


与上述互联网、IT巨头相比,汽车巨头丰田加入到人工智能领域引发诸多遐想。2015年9月,丰田宣布投入5000万美元开展人工智能和机器人研究,同时聘请原DARPA机器人大拿Gill Pratt负责该项目。尽管Gill Pratt表示丰田无意制造无人驾驶汽车,但在12月,丰田投资10亿日元收购收购人工智能创业公司Preferred Networks的小部分股份,Preferred Networks一直专注于机器学习技术,这也从一个侧面展现丰田有意布局无人驾驶的意图。而且,丰田还准备在明年1月份之前在硅谷建立一个机器人和人工智能研究中心,未来五年将在该项目上投资10亿美元。


4产品涌现


过去一年与巨头买买买和创业公司爆发相呼应的,是各种基于人工智能的新产品不断涌现,更重要的一点在于,越来越多面向普通消费者的人工智能产品推向市场,反过来又推动了整个产业的发展。


先来看看谷歌的几款产品。2015年6月,谷歌发布谷歌相册服务,它可以将相册中同一个人物的照片整合在一起,比如回顾一个婴儿从小到大的成长轨迹。通过长期学习,它甚至可以自动判断对你重要的时刻、重要的人、和重要的事物。在谷歌相册发布会上,科技博客O’Reilly就站在Larry Page旁边,O’Reilly很惊讶地发现,如果他在搜索框中输入类似「墓碑」这样的关键字,该APP甚至能找出很久很久以前照的他叔叔墓地的照片。


谷歌11月份推出的邮件智能回复功能「Smart Reply」则利用自然语言理解和生成技术实现。谷歌选择的是LSTM模型,能够很好处理不同位置单词之间的依赖关系,并能够发现邮件内容中最重要的部分,而不会被附近的短句所影响。


如果说谷歌的上述产品都是千方百计地替代人类工作,那么Facebook的秘密武器M则展现出另一种可能性。M是一款内置于Facebook 消息类应用Messager(类似于微信)的聊天机器人,当有人通过Messenger 给M发送短信时,「通过人工智能引擎可以生成一个直接回复,同时教练可以让这个直接回复发送给用户,这个回复有时只是给出一个建议,有时是一个完全不同的答案,或者一些其他无关的回答。」 Facebook 产品副总裁Marcus这样解释M的工作原理。


2015年对于微软小冰来说也是成长迅速的一年。2015年8月第三代微软小冰正式发布,同时宣布小冰回归微信,三个月后,小冰发布了计算视觉功能。截止到 2015 年 11 月,小冰已经积累了百亿轮与人类的对话信息,从中提取了海量历史数据,这些海量数据对于改善小冰的「智能」具有重要意义,从某种意义上说,所有与小冰交谈的人,都是小冰的教练。


人类不仅可以训练Facebook M、微软小冰,同时还可以让特斯拉汽车变得更「聪明」,在特斯拉Autopilot的媒体发布会上,马斯克为每位Model S车主取名为「专业教练」,意味着每个驾驶者将会训练这个系统,通过大量的训练数据近一步完善Autopilot的自动化驾驶功能。据多个Model S 反映,特斯拉Autopilot体验非常出色。


除了上述直接面向消费者的产品,人工智能在2B(企业级)市场依然有诸多创新。一家名为Orbital Insight的美国创业公司利用人工智能来分析卫星图片,得到全球的石油储存量。接着,他们又与世界银行合作,利用卫星图片和人工智能来分析全球的贫穷状况。


9月初,由Andreessen Horowitz投资的比特币创业公司「21」发布第一款产品——比特币电脑!不同于所谓的挖矿,这是一款将比特币与现有的互联网服务整合的硬件设备,鼓励更多开发者开发更多支持比特币的应用。

5伦理之争加剧


与人工智能市场蓬勃发展相呼应,2015年的人工智能领域,伦理之争加剧。既去年霍金、马斯克先后警告人工智能将给人类带来灾难之后,2015年7月,包括霍金、马斯克、史蒂夫·沃兹尼亚克在内的多人都签署了一封公开信,呼吁禁止自动化武器,从而避免引发军备竞赛,否则可能引发比冷战更危险的形势。


2015年11月,美林银行发布了「关于机器人革命可能带来的影响」的报告,虽然报告陈述了机器人在人口老龄化方面的优势,但是它也还预测了,大量的工作将被消灭:其中,英国将有35%的工作被机器人取代,而美国的比例则高达47%,甚至包括白领工作职位。


在这个大背景下,两家致力于研究人工智能对人类威胁的研究中心先后在2015年12月成立。12月初英国剑桥大学新建了一个研究中心,致力于人工智能未来并旨在影响其道德伦理发展。据了解,一家名为Leverhulme的信托公司将为其提供十年约1000万英镑的资助。而到12月中旬,特斯拉和SpaceX的CEO伊隆·马斯克、Y Combinator董事长Sam Altman等人宣布出资10亿美元成立非盈利性人工智能(AI)研究机构OpenAI


DeepMind CEO Hassabis也透露,霍金曾和他讨论人工智能的情况。而下月,纽约大学将举行人工智能伦理研讨会,众多互联网巨头及创业公司的人将参与本次会议。


另一方面,人工智能的伦理之争也从工作是否被替代延伸到多个领域,更涉及到家庭伦理层面,比如如何应对未来人与机器人的性爱问题。11月初,本来有一场名为「机器人的爱与性」的会议在马来西亚召开,但是被取消了。马来西亚警方说这个活动「非法」并且「荒谬」。一名警官说:「与机器人做爱,没有任何科学可言。」不过,依然有许多人相信,人与机器人的亲密关系中有很多有趣和重要的事情值得研究和讨论。


又或者,无人驾驶汽车的「电车悖论」如何作答,尽管这并非计算机科学家必须回答的问题,但在未来的政策制定过程中,计算机科学家理应成为重要参与者,毕竟,他们手中的代码或许左右了太多人的生命。


回顾2015年,人类在人工智能征程上取得长足进步。虽然相比于火热的互联网创业,人工智能领域的创业还处在早期阶段。然而正如彼得蒂尔所言:「我们需要能飞的汽车,但结果却得到了140个字符」,人工智能的创业与创新将从一个全新的维度塑造这个世界,或许不久之后,「互联网+」将进化为「人工智能+」,而这一切,机器之心将与你一起屏息期待。

相关文章
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
AI与艺术创作:机器的艺术天赋
【10月更文挑战第31天】本文探讨了AI在艺术创作中的应用及其独特“艺术天赋”。从绘画、音乐、文学到设计,AI通过计算机视觉、自然语言处理和生成对抗网络等技术,逐渐展现出强大的创作能力。尽管面临原创性、审美标准和法律伦理等挑战,AI艺术创作仍为艺术界带来了新的视角和灵感,未来有望与人类艺术家共同推动艺术的创新与发展。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与艺术创作:机器与创造力
【10月更文挑战第31天】本文探讨了人工智能在艺术创作中的应用,涵盖绘画、音乐和文学等领域。通过深度学习、生成模型和强化学习等技术,AI正重新定义创造力的概念,辅助艺术家创作,并激发新的艺术形式。文章还讨论了AI对人类创造力的影响及未来发展趋势。
|
4月前
|
机器学习/深度学习 人工智能 算法
人工智能在艺术创作中的创新应用:机器创作的未来
【9月更文挑战第25天】 人工智能在艺术创作中的创新应用,不仅为艺术家们提供了全新的创作工具和媒介,更在创作理念、艺术形态等方面带来了深刻的变革。随着技术的不断发展和完善,机器创作将在未来展现出更加广阔的发展前景。我们期待在人工智能的助力下,艺术创作能够迎来更加繁荣和多元的未来。
|
4月前
|
机器学习/深度学习 人工智能 算法
AI伦理边界:当机器决策超越人类认知
【9月更文挑战第5天】AI伦理边界的探索是一个复杂而艰巨的任务,需要政府、企业、学术界和社会各界的共同努力。随着AI技术的不断发展,我们有理由相信,通过不断的探索和实践,我们一定能够找到一条既符合伦理道德又能够充分发挥AI技术潜力的道路。在未来的日子里,让我们携手并进,共同迎接AI技术带来的机遇与挑战。
|
5月前
|
机器学习/深度学习 人工智能 自动驾驶
人工智能的伦理困境:机器的自主性与人类的责任
【8月更文挑战第8天】在人工智能技术飞速发展的今天,一个日益凸显的问题是关于AI的伦理困境。随着机器学习和深度学习技术的进步,AI系统展现出越来越高的自主性,这引发了关于人类责任和控制的哲学讨论。本文将探讨AI自主性的提升如何影响人类的伦理责任,以及我们应如何平衡技术进步与道德考量。
|
5月前
|
人工智能
人工智能的伦理困境:机器是否应拥有权利?
【8月更文挑战第6天】 随着人工智能技术的飞速发展,机器在处理复杂任务、决策甚至创造性工作方面的能力越来越强。这引发了一个深刻的哲学和法律问题:当人工智能达到某种智能水平时,我们是否应该赋予它们某些权利?本文将探讨这一话题,分析支持与反对的观点,并讨论可能的社会影响。
91 1
|
5月前
|
机器学习/深度学习 人工智能 算法
人工智能的伦理困境:机器决策与人类价值观的碰撞
【8月更文挑战第23天】在人工智能(AI)技术飞速发展的时代,机器学习算法已渗透进我们生活的方方面面,从日常消费推荐到医疗诊断,再到司法判决。然而,随着AI决策能力的增强,一系列伦理问题也随之浮现。本文将探讨AI决策背后的伦理挑战,包括数据偏见、隐私保护、责任归属以及自主性与控制的问题,并思考如何在技术进步的同时维护人类的价值观和伦理标准。
|
5月前
|
人工智能 自动驾驶 开发者
人工智能伦理困境:机器自主性与人类责任
在人工智能技术迅猛发展的今天,我们面临着一个前所未有的伦理挑战。随着机器智能的不断提升,它们在决策过程中展现出越来越多的自主性。本文将探讨这一现象背后的伦理问题,特别是当AI系统的行为导致负面后果时,我们应如何界定人类的责任。我们将分析几个关键领域,包括自动驾驶汽车、医疗诊断以及军事应用,来揭示当前的法律和道德框架在应对这些挑战时的不足之处。通过提出一系列针对性的建议,本文旨在推动对AI伦理问题的深入讨论,并促进相关法规的完善。
|
1月前
|
机器学习/深度学习 人工智能 搜索推荐
探索人工智能在现代医疗中的革新应用
本文深入探讨了人工智能(AI)技术在医疗领域的最新进展,重点分析了AI如何通过提高诊断准确性、个性化治疗方案的制定以及优化患者管理流程来革新现代医疗。文章还讨论了AI技术面临的挑战和未来发展趋势,为读者提供了一个全面了解AI在医疗领域应用的视角。
73 11
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能在医疗诊断中的应用与前景####
本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状、面临的挑战及未来发展趋势。通过分析AI如何辅助医生进行疾病诊断,提高诊断效率和准确性,以及其在个性化医疗中的潜力,文章揭示了AI技术对医疗行业变革的推动作用。同时,也指出了数据隐私、算法偏见等伦理问题,并展望了AI与人类医生协同工作的前景。 ####
86 0