IEEE2015 可视化会议-机器学习渐呈星火燎原之势

简介:

摘要:机器学习(ML)与数据可视化(Data Visualization)的关系越来越紧密。大多数论文在数据预处理阶段都使用了机器学习技术。本文内容是对时间序列数据的可视化等四个主要应用领域高度强调的机器学习技术的总结。


最近,我参加了在芝加哥举办的IEEE 2015可视化大会,并草草记录了一些有关机器学习的内容。对于那些不了解该会议的人来说,你有必要了解下,这是从业者、学者和研究人员最大的一次年度聚会,它们的研究方向是如何将数据进行可视化并且对我们可用。会议论文主要来自IEEE VIS的三个核心子会议:可视分析科学与技术(Visual Analytics Science and Technology,VAST)、信息可视化(Information Visualization,InfoVis) 、科学可视化(Scientific Visualization,SciVis)。同时举行的还有三大IEEE专题报告会:大数据分析和可视化(Large Data Analysis and Visualization, LDAV)、网络安全可视化(Visualization for Cyber Security, VizSec)以及第一次举行的数据科学可视化专题报告会(VDS)。


今年,与会人员超过1500人,包括来自商业智能和高级分析的领先企业人士,有Bloomberg, Google,IBM,Tableau以及Microsoft。


此次会议给我印象最深的是:机器学习(ML)与数据可视化(Data Visualization)的关系越来越紧密。大多数论文在数据预处理阶段都使用了机器学习技术。例如,VAST会议最好的论文“Reducing Snapshots to Points: A Visual Analytics Approach to Dynamic Network Exploration (离散化Snapshots:一个用于动态网络探索的可视分析方法)”,使用矢量化、标准化以及降维技术将高维动态网络数据映射到二维空间,然后使用两个并列图做为可视化输出:一个展示网络快照(network Snapshot),一个显示网络演变。使用户更容易将异常与正常稳定的状态区分开来。


以下内容是对四个主要应用领域高度强调的机器学习技术的总结:


在网络或空间数据可视化中,聚类和分类已被广泛用于干扰数据的降解和兴趣识别。例如,在“MobilityGraphs: Visual Analysis of Mass Mobility Dynamics via Spatio-Temporal Graphs and Clustering(基于时空图聚类的大量流动数据的可视分析)”一文,对大伦敦地区每小时Twitter用户的移动数据使用的就是空间聚集的区域聚类和颜色编码的时空图聚类。

(图像来自达姆施塔特工业大学的交互式图形系统小组.)

对于时间序列数据的可视化,存在一个大的挑战,即在有限的显示空间里展示大数据集,并且做到图形不重叠。一个有效的方法是将数据点汇聚到各个时间段,然后创建一个带有层次感的多焦点放大线形图,如这篇文章:“TimeNotes: A Study on Effective Chart Visualization and Interaction Techniques for Time-Series Data(TimeNotes:基于时间序列数据的高效图表可视化和交互技术研究)”。

(图片来自TimeNotes

在文本数据可视化中,实体提取、主题识别和情感分析等文本挖掘技术的可视化逐渐成为必要。在这篇论文“Exploring Evolving Media Discourse Through Event Cueing(基于事件线索的媒体话语变化探索)”中,多个挖掘结果,如Wordle中的实体,随着时间发展的情感得分,相互连接在一起,用以加强媒体话语分析。

(图片来自亚利桑那州立大学的VADER实验室

异常检测,虽然它并不是可视化的单独研究领域,但许多的研究小组都已对其已研究多时,利用自动化分析结果协助人们进行判断。例如,在“Visualization and Analysis of Rotating Stall for Transonic Jet Engine Simulation(基于跨音速喷气发动机的旋转失速模拟的可视化和分析)” 一文中,作者使用格鲁布斯检验(Grubbs’ test)来识别叶片通道中异常值,并将其作为涡轮发动机旋转失速的预征兆。同时,在“TargetVue: visual analysis of anomalous user behaviors in online communication systems(TargetVue:基于在线通信系统的用户异常行为的可视分析)”一文中,TLOF(time-adaptive local outlier factor,时间自适应局部异常因子)模型用于识别用户行为的突然变化,模型特征主要从在线通信系统中提取。


VAST的挑战赛则是另一个亮点——该比赛始于2006年,每年举行一次,旨在反映现实世界的当下分析水平,并鼓励研究新颖的数据处理、可视化和交互方法。今年的挑战是分析一个娱乐公园一周内涉及犯罪行为的个人和团体活动。用于数据处理和ML最流行的语言是Python和R,目前Azure机器学习平台对两者都支持。


总之,该会议是一个学习前沿的可视化方法的好地方,同时还可以和该领域的专家进行交流。



原文发布时间为:2015-11-22

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“BigDataDigest”微信公众号

相关文章
|
机器学习/深度学习 数据可视化 算法
机器学习-可解释性机器学习:随机森林与fastshap的可视化模型解析
机器学习-可解释性机器学习:随机森林与fastshap的可视化模型解析
1162 1
|
机器学习/深度学习 算法 TensorFlow
文本分类识别Python+卷积神经网络算法+TensorFlow模型训练+Django可视化界面
文本分类识别Python+卷积神经网络算法+TensorFlow模型训练+Django可视化界面
220 0
文本分类识别Python+卷积神经网络算法+TensorFlow模型训练+Django可视化界面
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
710 4
|
机器学习/深度学习 数据可视化 搜索推荐
Python在社交媒体分析中扮演关键角色,借助Pandas、NumPy、Matplotlib等工具处理、可视化数据及进行机器学习。
【7月更文挑战第5天】Python在社交媒体分析中扮演关键角色,借助Pandas、NumPy、Matplotlib等工具处理、可视化数据及进行机器学习。流程包括数据获取、预处理、探索、模型选择、评估与优化,以及结果可视化。示例展示了用户行为、话题趋势和用户画像分析。Python的丰富生态使得社交媒体洞察变得高效。通过学习和实践,可以提升社交媒体分析能力。
224 1
|
12月前
|
机器学习/深度学习 数据可视化 JavaScript
探索机器学习模型的可视化技术
【9月更文挑战第23天】在数据科学中,理解和解释机器学习模型的决策过程是至关重要的。本文将介绍几种流行的可视化工具和库,如TensorBoard、D3.js等,帮助读者更好地理解模型内部工作原理及其预测结果。通过实例演示如何使用这些工具进行模型可视化,增强模型的可解释性。
|
机器学习/深度学习 数据采集 数据可视化
基于python 机器学习算法的二手房房价可视化和预测系统
文章介绍了一个基于Python机器学习算法的二手房房价可视化和预测系统,涵盖了爬虫数据采集、数据处理分析、机器学习预测以及Flask Web部署等模块。
390 2
基于python 机器学习算法的二手房房价可视化和预测系统
|
机器学习/深度学习 数据可视化 TensorFlow
探索机器学习模型的可视化:从理论到实践
【7月更文挑战第31天】本文将深入探讨如何通过可视化技术来理解和解释复杂的机器学习模型。我们将介绍多种可视化工具和方法,并通过实际代码示例展示如何应用这些技术来揭示模型的内部工作原理。文章旨在为读者提供一种直观的方式来理解、调试和优化他们的机器学习模型。
245 0
|
机器学习/深度学习 数据可视化 算法
R语言梯度提升机 GBM、支持向量机SVM、正则判别分析RDA模型训练、参数调优化和性能比较可视化分析声纳数据
R语言梯度提升机 GBM、支持向量机SVM、正则判别分析RDA模型训练、参数调优化和性能比较可视化分析声纳数据
|
机器学习/深度学习 数据可视化 算法
【阿旭机器学习实战】【36】糖尿病预测---决策树建模及其可视化
【阿旭机器学习实战】【36】糖尿病预测---决策树建模及其可视化
|
机器学习/深度学习 监控 数据可视化
Scikit-learn与可视化:让机器学习结果更直观
【4月更文挑战第17天】本文探讨了如何使用Scikit-learn和可视化工具使机器学习结果更直观。Scikit-learn作为Python的开源机器学习库,结合Matplotlib、Seaborn等可视化库,便于数据探索、模型训练过程监控及结果展示。通过示例代码,展示了数据探索的pairplot、模型训练准确率曲线的绘制以及聚类结果的散点图,强调了可视化在提升模型理解度和应用普及性上的作用。随着可视化技术进步,机器学习将变得更直观易懂。