使用 Python 进行数据可视化之Matplotlib

简介: 使用 Python 进行数据可视化之Matplotlib

在当今世界,我们每天都会产生大量数据。有时要分析某些趋势的数据,如果数据是原始格式,模式可能会变得困难。为了克服这种数据可视化发挥作用。数据可视化提供了良好的、有组织的数据图形表示,使其更易于理解、观察和分析。在本系列教程中,我们将讨论如何使用 Python 可视化数据。


Matplotlib

Seaborn

Bokeh

Plotly

我们将一一讨论这些库,并绘制一些最常用的图形。


注意: 如果您想了解有关这些库的深入信息,可以按照他们的完整教程进行操作。


在深入研究这些库之前,首先,我们需要一个数据库来绘制数据。我们将在本完整教程中使用 tips database。让我们讨论一下这个数据库的简介。


使用的数据库


tips 数据库


tips 数据库是20世纪90年代初期顾客在餐厅的两个半月的小费记录。它包含 6 列,例如 total_bill、tip、sex、smoker、day、time、size。


您可以从这里下载 tips 数据库。


例子:


import pandas as pd
# 读取数据库
data = pd.read_csv("tips.csv")
# 打印前 10 行
print(data.head(10))


输出:

image.png



Matplotlib


Matplotlib 是一个易于使用的低级数据可视化库,它构建在 NumPy 数组上。它由散点图、线图、直方图等各种图组成。 Matplotlib 提供了很大的灵活性。


要安装此库,请在终端中输入以下命令。


pip install matplotlib


image.png

安装 Matplotlib 后,让我们看看使用这个库最常用的绘图。


散点图


散点图用于观察变量之间的关系,并用点来表示它们之间的关系。matplotlib 库中的scatter()方法用于绘制散点图。


例子:


import pandas as pd
import matplotlib.pyplot as plt
# 读取数据库
data = pd.read_csv("tips.csv")
# day 对 tip 的散点图
plt.scatter(data['day'], data['tip'])
# 为 Plot 添加标题
plt.title("Scatter Plot")
# 设置 X 和 Y 标签
plt.xlabel('Day')
plt.ylabel('Tip')
plt.show()


输出:

image.png



如果我们可以添加颜色并更改点的大小,则此图会更有意义。我们可以通过分别使用 scatter 函数的c 和 s参数来做到这一点。我们还可以使用colorbar()方法显示颜色条。


import pandas as pd
import matplotlib.pyplot as plt
# 读取数据库
data = pd.read_csv("tips.csv")
# day对tip的散点图
plt.scatter(data['day'], data['tip'], c=data['size'],
    s=data['total_bill'])
# 为Plot添加标题
plt.title("Scatter Plot")
# 设置 X 和 Y 标签
plt.xlabel('Day')
plt.ylabel('Tip')
plt.colorbar()
plt.show()


image.png


折线图


折线图用于表示不同轴上两个数据 X 和 Y 之间的关系。它是使用plot() 函数绘制的。让我们看看下面的例子。


例子:


import pandas as pd
import matplotlib.pyplot as plt
# 读取数据库
data = pd.read_csv("tips.csv")
# day对tip的折线图
plt.plot(data['tip'])
plt.plot(data['size'])
# 为Plot添加标题
plt.title("Scatter Plot")
# 设置 X 和 Y 标签
plt.xlabel('Day')
plt.ylabel('Tip')
plt.show()

输出:


image.png


条形图


柱状图或叫条形图是表示与长度和高度的矩形条数据的类别是正比于它们所代表的值的图。它可以使用bar()方法创建。


例子:


import pandas as pd
import matplotlib.pyplot as plt
# 读取数据库
data = pd.read_csv("tips.csv")
# day对tip的条形图
plt.bar(data['day'], data['tip'])
plt.title("Bar Chart")
# 设置 X 和 Y 标签
plt.xlabel('Day')
plt.ylabel('Tip')
# 添加图例
plt.show()


输出:


image.png


直方图


直方图基本上是用来在一些基团的形式来表示数据。它是一种条形图,其中 X 轴表示 bin 范围,而 Y 轴提供有关频率的信息。的HIST()函数用于计算和创建直方图。在直方图中,如果我们传递分类数据,那么它将自动计算该数据的频率,即每个值出现的频率。


例子:

import pandas as pd
import matplotlib.pyplot as plt
# 读取数据库
data = pd.read_csv("tips.csv")
# total_bill直方图
plt.hist(data['total_bill'])
plt.title("Histogram")
# 添加图例
plt.show()

输出:

image.png


目录
相关文章
|
24天前
|
机器学习/深度学习 数据可视化 搜索推荐
基于python的汽车数据可视化、推荐及预测系统
本研究围绕汽车数据可视化、推荐及预测系统展开,结合大数据与人工智能技术,旨在提升用户体验与市场竞争力。内容涵盖研究背景、意义、相关技术如 Python、ECharts、协同过滤及随机森林回归等,探讨如何挖掘汽车数据价值,实现个性化推荐与智能预测,为汽车行业智能化发展提供支持。
|
2月前
|
数据采集 数据可视化 搜索推荐
Python数据分析全流程指南:从数据采集到可视化呈现的实战解析
在数字化转型中,数据分析成为企业决策核心,而Python凭借其强大生态和简洁语法成为首选工具。本文通过实战案例详解数据分析全流程,涵盖数据采集、清洗、探索、建模、可视化及自动化部署,帮助读者掌握从数据到业务价值的完整技能链。
376 0
|
2月前
|
存储 数据可视化 BI
Python可视化应用——学生成绩分布柱状图展示
本程序使用Python读取Excel中的学生成绩数据,统计各分数段人数,并通过Matplotlib库绘制柱状图展示成绩分布。同时计算最高分、最低分及平均分,实现成绩可视化分析。
171 0
|
13天前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。
|
28天前
|
数据采集 搜索推荐 数据可视化
基于python大数据的商品数据可视化及推荐系统
本系统基于Python、Django与ECharts,构建大数据商品可视化及推荐平台。通过爬虫获取商品数据,利用可视化技术呈现销售趋势与用户行为,结合机器学习实现个性化推荐,助力电商精准营销与用户体验提升。
|
22天前
|
数据可视化 大数据 数据挖掘
基于python大数据的招聘数据可视化分析系统
本系统基于Python开发,整合多渠道招聘数据,利用数据分析与可视化技术,助力企业高效决策。核心功能包括数据采集、智能分析、可视化展示及权限管理,提升招聘效率与人才管理水平,推动人力资源管理数字化转型。
|
1月前
|
搜索推荐 算法 数据可视化
基于python大数据的招聘数据可视化及推荐系统
本研究聚焦于基于协同过滤的就业推荐系统设计与实现。随着就业压力增大和信息技术发展,传统求职方式面临挑战。通过分析用户行为与职位特征,协同过滤技术可实现个性化职位推荐,提升求职与招聘效率。研究涵盖系统架构、数据采集、算法实现及可视化展示,旨在优化就业匹配,促进人才与岗位精准对接,助力就业市场智能化发展。
|
1月前
|
数据采集 数据可视化 API
驱动业务决策:基于Python的App用户行为分析与可视化方案
驱动业务决策:基于Python的App用户行为分析与可视化方案
|
2月前
|
存储 数据采集 数据可视化
Python自动化分析知网文献:爬取、存储与可视化
Python自动化分析知网文献:爬取、存储与可视化
|
3月前
|
数据采集 Web App开发 自然语言处理
利用Python构建今日头条搜索结果的可视化图表
利用Python构建今日头条搜索结果的可视化图表

推荐镜像

更多