Python编程:方差、标准差、均方差、均方根值、均方误差、均方根误差

本文涉及的产品
云原生网关 MSE Higress,422元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
任务调度 XXL-JOB 版免费试用,400 元额度,开发版规格
简介: Python编程:方差、标准差、均方差、均方根值、均方误差、均方根误差
缩写 英文 中文
RMSR Root Mean Squared Error 均方根误差
MAE Mean Absolute Error 平均绝对误差

python实现代码

# -*- coding: utf-8 -*-
import math
def get_average(records):
    """
    平均值
    """
    return sum(records) / len(records)
def get_variance(records):
    """
    方差 反映一个数据集的离散程度
    """
    average = get_average(records)
    return sum([(x - average) ** 2 for x in records]) / len(records)
def get_standard_deviation(records):
    """
    标准差 == 均方差 反映一个数据集的离散程度
    """
    variance = get_variance(records)
    return math.sqrt(variance)
def get_rms(records):
    """
    均方根值 反映的是有效值而不是平均值
    """
    return math.sqrt(sum([x ** 2 for x in records]) / len(records))
def get_mse(records_real, records_predict):
    """
    均方误差 估计值与真值 偏差
    """
    if len(records_real) == len(records_predict):
        return sum([(x - y) ** 2 for x, y in zip(records_real, records_predict)]) / len(records_real)
    else:
        return None
def get_rmse(records_real, records_predict):
    """
    均方根误差:是均方误差的算术平方根
    """
    mse = get_mse(records_real, records_predict)
    if mse:
        return math.sqrt(mse)
    else:
        return None
def get_mae(records_real, records_predict):
    """
    平均绝对误差
    """
    if len(records_real) == len(records_predict):
        return sum([abs(x - y) for x, y in zip(records_real, records_predict)]) / len(records_real)
    else:
        return None
if __name__ == '__main__':
    records1 = [3, 4, 5]
    records2 = [2, 4, 6]
    # 平均值
    average1 = get_average(records1)  # 4.0
    average2 = get_average(records2)  # 4.0
    # 方差
    variance1 = get_variance(records1)  # 0.66
    variance2 = get_variance(records2)  # 2.66
    # 标准差
    std_deviation1 = get_standard_deviation(records1)  # 0.81
    std_deviation2 = get_standard_deviation(records2)  # 1.63
    # 均方根
    rms1 = get_rms(records1)  # 4.08
    rms2 = get_rms(records2)  # 4.32
    # 均方误差
    mse = get_mse(records1, records2)  # 0.66
    # 均方根误差
    rmse = get_rmse(records1, records2)  # 0.81
    # 平均绝对误差
    mae = get_mae(records1, records2)  # 0.66

公式参考:

方差(variance)、标准差(Standard Deviation)、均方差、均方根值(RMS)、均方误差(MSE)、均方根误差(RMSE)

相关文章
|
2月前
|
Java 数据处理 索引
(Pandas)Python做数据处理必选框架之一!(二):附带案例分析;刨析DataFrame结构和其属性;学会访问具体元素;判断元素是否存在;元素求和、求标准值、方差、去重、删除、排序...
DataFrame结构 每一列都属于Series类型,不同列之间数据类型可以不一样,但同一列的值类型必须一致。 DataFrame拥有一个总的 idx记录列,该列记录了每一行的索引 在DataFrame中,若列之间的元素个数不匹配,且使用Series填充时,在DataFrame里空值会显示为NaN;当列之间元素个数不匹配,并且不使用Series填充,会报错。在指定了index 属性显示情况下,会按照index的位置进行排序,默认是 [0,1,2,3,...] 从0索引开始正序排序行。
247 0
|
2月前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
396 0
|
2月前
|
Java 数据处理 索引
(numpy)Python做数据处理必备框架!(二):ndarray切片的使用与运算;常见的ndarray函数:平方根、正余弦、自然对数、指数、幂等运算;统计函数:方差、均值、极差;比较函数...
ndarray切片 索引从0开始 索引/切片类型 描述/用法 基本索引 通过整数索引直接访问元素。 行/列切片 使用冒号:切片语法选择行或列的子集 连续切片 从起始索引到结束索引按步长切片 使用slice函数 通过slice(start,stop,strp)定义切片规则 布尔索引 通过布尔条件筛选满足条件的元素。支持逻辑运算符 &、|。
162 0
|
3月前
|
数据采集 机器学习/深度学习 人工智能
Python:现代编程的首选语言
Python:现代编程的首选语言
291 102
|
3月前
|
数据采集 机器学习/深度学习 算法框架/工具
Python:现代编程的瑞士军刀
Python:现代编程的瑞士军刀
314 104
|
3月前
|
人工智能 自然语言处理 算法框架/工具
Python:现代编程的首选语言
Python:现代编程的首选语言
262 103
|
3月前
|
机器学习/深度学习 人工智能 数据挖掘
Python:现代编程的首选语言
Python:现代编程的首选语言
193 82
|
2月前
|
Python
Python编程:运算符详解
本文全面详解Python各类运算符,涵盖算术、比较、逻辑、赋值、位、身份、成员运算符及优先级规则,结合实例代码与运行结果,助你深入掌握Python运算符的使用方法与应用场景。
179 3
|
2月前
|
数据处理 Python
Python编程:类型转换与输入输出
本教程介绍Python中输入输出与类型转换的基础知识,涵盖input()和print()的使用,int()、float()等类型转换方法,并通过综合示例演示数据处理、错误处理及格式化输出,助你掌握核心编程技能。
435 3
|
2月前
|
并行计算 安全 计算机视觉
Python多进程编程:用multiprocessing突破GIL限制
Python中GIL限制多线程性能,尤其在CPU密集型任务中。`multiprocessing`模块通过创建独立进程,绕过GIL,实现真正的并行计算。它支持进程池、队列、管道、共享内存和同步机制,适用于科学计算、图像处理等场景。相比多线程,多进程更适合利用多核优势,虽有较高内存开销,但能显著提升性能。合理使用进程池与通信机制,可最大化效率。
266 3

推荐镜像

更多