Python爬虫:xpath常用方法示例

简介: Python爬虫:xpath常用方法示例
# -*-coding:utf-8-*-
html = """
<html>
 <head>
  <base href='http://example.com/' />
  <title>Example website</title>
 </head>
 <body>
  <div id='images'>
   <a href='image1.html'>Name: My image 1 <br /><img src='image1_thumb.jpg' /></a>
   <a href='image2.html'>Name: My image 2 <br /><img src='image2_thumb.jpg' /></a>
   <a href='image3.html'>Name: My image 3 <br /><img src='image3_thumb.jpg' /></a>
   <a href='image4.html'>Name: My image 4 <br /><img src='image4_thumb.jpg' /></a>
   <a href='image5.html'>Name: My image 5 <br /><img src='image5_thumb.jpg' /></a>
  </div>
 </body>
</html>
"""
from scrapy.selector import Selector
sel = Selector(text=html)
print("================title===============")
title_by_xpath = sel.xpath("//title//text()").extract_first()
print(title_by_xpath)
title_by_css = sel.css("title::text").extract_first()
print(title_by_css)
print("================href===============")
hrefs = sel.xpath("//a/@href").extract()
print(hrefs)
hrefs_by_css = sel.css("a::attr(href)").extract()
print(hrefs_by_css)
print("================img===============")
imgs = sel.xpath("//a[contains(@href, 'image')]/@href").extract()
print(imgs)
imgs_by_css = sel.css("a[href*=image]::attr(href)").extract()
print(imgs_by_css)
print("================src===============")
src = sel.xpath("//a[contains(@href, 'image')]/img/@src").extract()
print(src)
src_by_css = sel.css("a[href*=image] img::attr(src)").extract()
print(src_by_css)
print("================ re ===============")
text_by_re = sel.css("a[href*=image]::text").re(r"Name:\s*(.*)")
print(text_by_re)
print("================ xpath ===============")
div = sel.xpath("//div")  # 相对路径
print(div)
a = div.xpath(".//a").extract() # 从当前提取所有元素
print(a)
print("================ text ===============")
text='<a href="#">Click here to go to the <strong>Next Page</strong></a>'
sel1 = Selector(text=text)
# a下面的文字
a = sel1.xpath("//a/text()").extract()
print(a)
# a 下面所有的文字,包括strong
a = sel1.xpath("//a//text()").extract()
print(a)
# 解析出所有文字内容
a = sel1.xpath("string(//a)").extract()
print(a)
a = sel1.xpath("string(.)").extract()
print(a)
# 简化写法,推荐
xp = lambda x: sel.xpath(x).extract()
all_a = xp("//a/text()")
print(all_a)
相关文章
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
533 6
|
数据采集 前端开发 中间件
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第26天】Python是一种强大的编程语言,在数据抓取和网络爬虫领域应用广泛。Scrapy作为高效灵活的爬虫框架,为开发者提供了强大的工具集。本文通过实战案例,详细解析Scrapy框架的应用与技巧,并附上示例代码。文章介绍了Scrapy的基本概念、创建项目、编写简单爬虫、高级特性和技巧等内容。
528 4
|
数据采集 JSON 前端开发
Python爬虫进阶:使用Scrapy库进行数据提取和处理
在我们的初级教程中,我们介绍了如何使用Scrapy创建和运行一个简单的爬虫。在这篇文章中,我们将深入了解Scrapy的强大功能,学习如何使用Scrapy提取和处理数据。
|
数据采集 存储 中间件
Python进行网络爬虫:Scrapy框架的实践
【8月更文挑战第17天】网络爬虫是自动化程序,用于从互联网收集信息。Python凭借其丰富的库和框架成为构建爬虫的首选语言。Scrapy作为一款流行的开源框架,简化了爬虫开发过程。本文介绍如何使用Python和Scrapy构建简单爬虫:首先安装Scrapy,接着创建新项目并定义爬虫,指定起始URL和解析逻辑。运行爬虫可将数据保存为JSON文件或存储到数据库。此外,Scrapy支持高级功能如中间件定制、分布式爬取、动态页面渲染等。在实践中需遵循最佳规范,如尊重robots.txt协议、合理设置爬取速度等。通过本文,读者将掌握Scrapy基础并了解如何高效地进行网络数据采集。
|
数据采集 存储 JSON
Python爬虫开发:BeautifulSoup、Scrapy入门
在现代网络开发中,网络爬虫是一个非常重要的工具。它可以自动化地从网页中提取数据,并且可以用于各种用途,如数据收集、信息聚合和内容监控等。在Python中,有多个库可以用于爬虫开发,其中BeautifulSoup和Scrapy是两个非常流行的选择。本篇文章将详细介绍这两个库,并提供一个综合详细的例子,展示如何使用它们来进行网页数据爬取。
|
数据采集 存储 中间件
Python高效爬虫——scrapy介绍与使用
Scrapy是一个快速且高效的网页抓取框架,用于抓取网站并从中提取结构化数据。它可用于多种用途,从数据挖掘到监控和自动化测试。 相比于自己通过requests等模块开发爬虫,scrapy能极大的提高开发效率,包括且不限于以下原因: 1. 它是一个异步框架,并且能通过配置调节并发量,还可以针对域名或ip进行精准控制 2. 内置了xpath等提取器,方便提取结构化数据 3. 有爬虫中间件和下载中间件,可以轻松地添加、修改或删除请求和响应的处理逻辑,从而增强了框架的可扩展性 4. 通过管道方式存储数据,更加方便快捷的开发各种数据储存方式
|
数据采集 存储 JSON
「Python」爬虫-9.Scrapy框架的初识-公交信息爬取
本文将讲解如何使用scrapy框架完成北京公交信息的获取。
930 0
|
数据采集 存储 JSON
Python爬虫面试:requests、BeautifulSoup与Scrapy详解
【4月更文挑战第19天】本文聚焦于Python爬虫面试中的核心库——requests、BeautifulSoup和Scrapy。讲解了它们的常见问题、易错点及应对策略。对于requests,强调了异常处理、代理设置和请求重试;BeautifulSoup部分提到选择器使用、动态内容处理和解析效率优化;而Scrapy则关注项目架构、数据存储和分布式爬虫。通过实例代码,帮助读者深化理解并提升面试表现。
672 0
|
数据采集 中间件 Shell
|
数据采集 数据处理 Python
Python爬虫基础:使用Scrapy库初步探索
Scrapy是Python中最流行的网页爬虫框架之一,强大且功能丰富。通过Scrapy,你可以快速创建一个爬虫,高效地抓取和处理网络数据。在这篇文章中,我们将介绍如何使用Scrapy构建一个基础的爬虫。