系统性能优化的关键指标(yyds)!!!

简介: 最近,很多小伙伴都在说,我没做过性能优化的工作,在公司只是做些CRUD的工作,接触不到性能优化相关的工作。现在出去找工作面试的时候,面试官总是问些很刁钻的问题来为难我,很多我都不会啊!那怎么办呢?那我就专门写一些与高并发系统相关的面试容易问到的问题吧。今天,我们就来说说在高并发场景下做性能优化有哪些衡量标准,以及做优化时需要注意哪些问题。

面试场景

面试官:平时工作中有没有做过一些性能优化相关的工作呢?

首先,我们来分析下面试官的这个问题。其实,以我本人招聘面试的经验来说,如果面试官问出了这样的一个问题。本质上不只是想让面试者简单的回答:做过或者没做过。而是想通过这个简单的问题来考察下面试者的思考能力和对于问题的理解能力。面试官本质上是想让面试者通过这个问题,讲述一下自己做性能优化相关工作的经验、以及对于性能优化工作的一些理论的理解,比如就包括:性能优化的衡量指标,期间需要注意的问题等等。

如果面试者在面试过程中,不能充分理解面试官的意图,回答问题时,像挤牙膏一样,挤点出点,那么,大多数情况下,面试官就会认为这个人没啥性能优化的经验。此时,面试者就会在面试官心理的印象大打折扣,面试结果就有非常大的概率凉凉了。

、.jpg

衡量指标

对于性能优化来说,衡量的指标有很多,大体上可以分为:性能指标、响应时间、并发量、秒开率和正确性等。我们可以使用下图来表示这些衡量指标。

微信图片_20211121154251.jpg

接下来,我们就分别说明下这些衡量指标。

性能指标

性能指标又可以包含:吞吐量和响应速度。我们平时所说的QPS、TPS和HPS等,就可以归结为吞吐量。有很多小伙伴可能对于QPS、TPS和HPS等不太了解,我们先来说下这几个字母的含义。

  • QPS代表的是每秒的查询数量。
  • TPS代表的是每秒事务的数量。
  • HPS代表的是每秒的HTTP请求数量。

这些都是与吞吐量相关的衡量指标。

平时我们在做优化工作的时候,首先要明确需要优化的事项。比如:我们做的优化工作是要提高系统的吞吐量?还是要提升系统的响应速度呢?举一个具体点的例子:比如我们的程序中存在一些数据库或者缓存的批量操作,虽然在数据的读取上,响应速度下降了,但是我们优化的目标就是吞吐量,只要我们优化后系统的整体吞吐量明显上升了,那这也是提升了程序的性能。

所以说,优化性能不只是提升系统的响应速度。

这里,优化性能也并不是一味的优化吞吐量和优化响应速度,而是在吞吐量和响应速度之间找到一个平衡点,使用有限的服务器资源来更好的提升用户体验。

响应时间

对于响应时间来说,有两个非常重要的衡量指标。那就是:平均响应时间和百分位数。

(1)平均响应时间

通常,平均响应时间体现的是服务接口的平均处理能力。计算方式就是把所有的请求所耗费的时间加起来,然后除以请求的次数。举个简单的例子:比如:我们向一个网站发送了5次请求,每次请求所耗费的时间分别为:1ms,2ms,1ms,3ms,2ms,那么,平均响应时间就是(1+2+1+3+2)/ 5 = 1.8ms,所以,平均响应时间就是1.8ms。

平均响应时间这个指标存在一个问题:如果在短时间内请求变得很慢,但很快过去了,此时使用平均响应时间就无法很好的体现出性能的波动问题。

(2)百分位数

百分位数就是我们在优化的时候,圈定一个时间范围,把每次请求的耗时加入一个列表中,然后按照从小到大的顺序将这些时间进行排序。这样,我们取出特定百分位的耗时,这个数字就是 TP 值。

TP值表示的含义就是:超过 N% 的请求都在 X 时间内返回。比如 TP90 = 50ms,意思是超过 90th 的请求,都在 50ms 内返回。

百分位数这个指标也是很重要的,它反映的是应用接口的整体响应情况。

我们一般会将百分位数分为 TP50、TP90、TP95、TP99、TP99.9 等多个段,对高百分位的值要求越高,对系统响应能力的稳定性要求越高。

并发量

并发量指的是系统能够同时处理的请求数量,反映的是系统的负载能力。

我们在对高并发系统进行优化的时候,往往也会在并发量上进行调优,调优方式也是多种多样的,目的就是提高系统同时处理请求的能力。

总体来说,并发量这个指标理解起来还是比较简单的,我就不做过多的描述了。

秒开率

秒开率主要针对的是前端网页或者移动端APP来说的,如果一个前端网页或者APP能够在1秒内很平滑的打开,尤其是首页的加载。此时,用户就会感到前端网页或者APP使用起来很顺畅,如果超过3秒甚至更长的时间,用户就有可能会直接退出前端网页或者APP不再使用。

所以,在高并发场景下优化程序,不只要对后端程序进行优化,对于前端和APP也是要进行优化的。

正确性

正确性说的是无论我们以何种方式,何种手段对应用进行优化,优化后的交互数据结果必须是正确的。不能出现优化前性能比较低,数据正确,而优化后性能比较高,反而数据不正确的现象。

优化需要注意的问题

微信图片_20211121154254.jpg

  • 除非必要,一开始不要优化(尤其是开发阶段)
  • 有些优化准则已经过时,需要考虑当下的软硬件环境(不要墨守成规)
  • 不要过分强调某些系统级指标,如cache 命中率,而应该聚焦性能瓶颈点
  • 不盲从,测试、找到系统的性能瓶颈,再确定优化手段
  • 注意权衡优化的成本和收益(有些优化可能需要现有架构做出调整、增加开发/运维成本)
  • 优化的目标是用户体验、降低硬件成本(降低集群规模、不依赖单机高性能)
  • 测试环境的优化手段未必对生产环境有效(优化需要针对真实情况)
相关文章
|
存储 数据采集 安全
各种系统架构图与详细说明
原文:各种系统架构图与详细说明 共享平台逻辑架构设计 如上图所示为本次共享资源平台逻辑架构图,上图整体展现说明包括以下几个方面: 1 应用系统建设 本次项目的一项重点就是实现原有应用系统的全面升级以及新的应用系统的开发,从而建立行业的全面的应用系统架构群。
27413 1
|
人工智能 安全 API
OpenHands:能自主检索外部知识的 AI 编程工具,自动执行命令、网页浏览和生成代码等操作
OpenHands 是一款基于 AI 的编程工具,支持多智能体协作,能够自动生成代码、执行命令、浏览网页等,显著提升开发效率。
1810 26
OpenHands:能自主检索外部知识的 AI 编程工具,自动执行命令、网页浏览和生成代码等操作
|
12月前
|
机器学习/深度学习 人工智能 编解码
阿里开源AI视频生成大模型 Wan2.1:14B性能超越Sora、Luma等模型,一键生成复杂运动视频
Wan2.1是阿里云开源的一款AI视频生成大模型,支持文生视频和图生视频任务,具备强大的视觉生成能力,性能超越Sora、Luma等国内外模型。
3975 2
阿里开源AI视频生成大模型 Wan2.1:14B性能超越Sora、Luma等模型,一键生成复杂运动视频
|
机器学习/深度学习 开发者 数据格式
Gradio如何使用
**Gradio** 是一个开源 Python 库,用于快速创建和部署机器学习模型的用户界面。它支持多种输入输出形式,如文本、图像、音频等,无需复杂 Web 开发知识即可实现模型的直观展示和交互。Gradio 特点包括简单易用、实时更新、多样的输入输出形式以及轻松部署。通过几个简单的步骤,即可创建和分享功能强大的机器学习应用。
697 0
|
机器学习/深度学习 人工智能 搜索推荐
底层技术大揭秘!AI智能导购如何重塑购物体验
双十一期间,淘宝内测AI助手“淘宝问问”,基于阿里通义大模型,旨在提升用户在淘宝上的商品搜索和推荐效率。该助手通过品牌推荐、兴趣商品推荐和关联问题三大板块,提供个性化购物体验。其背后采用多智能体架构,包括规划助理和商品导购助理,通过对话历史和用户输入,实现精准商品推荐。此外,文章还介绍了如何快速部署此解决方案,并探讨了其对现代购物体验的影响。
|
缓存 移动开发 监控
淘宝页面首帧优化的经验和心得
淘宝页面首帧优化的经验和心得
719 9
|
存储 缓存 移动开发
别催更啦!手淘全链路性能优化下篇--容器极速之路
历时1年,上百万行代码!首次揭秘手淘全链路性能优化(上)我们重点介绍了手淘在性能优化中的一些实践和思路,主要集中在原生的代码的优化,这次,我们将继续分享在手淘容器化页面如 H5 及 Weex 相关的优化实践。
别催更啦!手淘全链路性能优化下篇--容器极速之路
|
移动开发 前端开发 JavaScript
淘宝小部件 Canvas 渲染流程与原理全解析
淘宝小部件 Canvas 渲染流程与原理全解析
794 0
淘宝小部件 Canvas 渲染流程与原理全解析
|
SQL 人工智能 JavaScript
重磅!通义千问2.5正式发布
重磅!通义千问2.5正式发布
19217 8