【高并发】亿级流量场景下如何为HTTP接口限流?看完我懂了!!

简介: 在互联网应用中,高并发系统会面临一个重大的挑战,那就是大量流高并发访问,比如:天猫的双十一、京东618、秒杀、抢购促销等,这些都是典型的大流量高并发场景。关于秒杀,小伙伴们可以参见我的另一篇文章《【高并发】高并发秒杀系统架构解密,不是所有的秒杀都是秒杀!》关于【冰河技术】微信公众号,解锁更多【高并发】专题文章。注意:由于原文篇幅比较长,所以被拆分为:理论、算法、实战(HTTP接口实战+分布式限流实战)三大部分。理论篇:《【高并发】如何实现亿级流量下的分布式限流?这些理论你必须掌握!!》算法篇:《【高并发】如何实现亿级流量下的分布式限流?这些算法你必须掌握!!》项目源码已提交

HTTP接口限流实战

这里,我们实现Web接口限流,具体方式为:使用自定义注解封装基于令牌桶限流算法实现接口限流。

不使用注解实现接口限流

搭建项目

这里,我们使用SpringBoot项目来搭建Http接口限流项目,SpringBoot项目本质上还是一个Maven项目。所以,小伙伴们可以直接创建一个Maven项目,我这里的项目名称为mykit-ratelimiter-test。接下来,在pom.xml文件中添加如下依赖使项目构建为一个SpringBoot项目。

<parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>2.2.6.RELEASE</version>
    </parent>
    <modelVersion>4.0.0</modelVersion>
    <groupId>io.mykit.limiter</groupId>
    <artifactId>mykit-ratelimiter-test</artifactId>
    <version>1.0.0-SNAPSHOT</version>
    <packaging>jar</packaging>
    <name>mykit-ratelimiter-test</name>
    <properties>
        <guava.version>28.2-jre</guava.version>
    </properties>
    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
            <exclusions>
                <exclusion>
                    <groupId>org.springframework.boot</groupId>
                    <artifactId>spring-boot-starter-tomcat</artifactId>
                </exclusion>
                <exclusion>
                    <groupId>org.springframework.boot</groupId>
                    <artifactId>spring-boot-starter-logging</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-undertow</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-configuration-processor</artifactId>
            <optional>true</optional>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-redis</artifactId>
        </dependency>
        <dependency>
            <groupId>org.aspectj</groupId>
            <artifactId>aspectjweaver</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-aop</artifactId>
        </dependency>
        <dependency>
            <groupId>com.google.guava</groupId>
            <artifactId>guava</artifactId>
            <version>${guava.version}</version>
        </dependency>
    </dependencies>
    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.1</version><!--$NO-MVN-MAN-VER$-->
                <configuration>
                    <source>${java.version}</source>
                    <target>${java.version}</target>
                </configuration>
            </plugin>
        </plugins>
    </build>

可以看到,我在项目中除了引用了SpringBoot相关的Jar包外,还引用了guava框架,版本为28.2-jre。

创建核心类

这里,我主要是模拟一个支付接口的限流场景。首先,我们定义一个PayService接口和MessageService接口。PayService接口主要用于模拟后续的支付业务,MessageService接口模拟发送消息。接口的定义分别如下所示。

  • PayService
package io.mykit.limiter.service;
import java.math.BigDecimal;
/**
 * @author binghe
 * @version 1.0.0
 * @description 模拟支付
 */
public interface PayService {
    int pay(BigDecimal price);
}
  • MessageService
package io.mykit.limiter.service;
/**
 * @author binghe
 * @version 1.0.0
 * @description 模拟发送消息服务
 */
public interface MessageService {
    boolean sendMessage(String message);
}

接下来,创建二者的实现类,分别如下。

  • MessageServiceImpl
package io.mykit.limiter.service.impl;
import io.mykit.limiter.service.MessageService;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.stereotype.Service;
/**
 * @author binghe
 * @version 1.0.0
 * @description 模拟实现发送消息
 */
@Service
public class MessageServiceImpl implements MessageService {
    private final Logger logger = LoggerFactory.getLogger(MessageServiceImpl.class);
    @Override
    public boolean sendMessage(String message) {
        logger.info("发送消息成功===>>" + message);
        return true;
    }
}
  • PayServiceImpl
package io.mykit.limiter.service.impl;
import io.mykit.limiter.service.PayService;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.stereotype.Service;
import java.math.BigDecimal;
/**
 * @author binghe
 * @version 1.0.0
 * @description 模拟支付
 */
@Service
public class PayServiceImpl implements PayService {
    private final Logger logger = LoggerFactory.getLogger(PayServiceImpl.class);
    @Override
    public int pay(BigDecimal price) {
        logger.info("支付成功===>>" + price);
        return 1;
    }
}

由于是模拟支付和发送消息,所以,我在具体实现的方法中打印出了相关的日志,并没有实现具体的业务逻辑。

接下来,就是创建我们的Controller类PayController,在PayController类的接口pay()方法中使用了限流,每秒钟向桶中放入2个令牌,并且客户端从桶中获取令牌,如果在500毫秒内没有获取到令牌的话,我们可以则直接走服务降级处理。

PayController的代码如下所示。

package io.mykit.limiter.controller;
import com.google.common.util.concurrent.RateLimiter;
import io.mykit.limiter.service.MessageService;
import io.mykit.limiter.service.PayService;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import java.math.BigDecimal;
import java.util.concurrent.TimeUnit;
/**
 * @author binghe
 * @version 1.0.0
 * @description 测试接口限流
 */
@RestController
public class PayController {
    private final Logger logger = LoggerFactory.getLogger(PayController.class);
    /**
     * RateLimiter的create()方法中传入一个参数,表示以固定的速率2r/s,即以每秒2个令牌的速率向桶中放入令牌
     */
    private RateLimiter rateLimiter = RateLimiter.create(2);
    @Autowired
    private MessageService messageService;
    @Autowired
    private PayService payService;
    @RequestMapping("/boot/pay")
    public String pay(){
        //记录返回接口
        String result = "";
        //限流处理,客户端请求从桶中获取令牌,如果在500毫秒没有获取到令牌,则直接走服务降级处理
        boolean tryAcquire = rateLimiter.tryAcquire(500, TimeUnit.MILLISECONDS);
        if (!tryAcquire){
            result = "请求过多,降级处理";
            logger.info(result);
            return result;
        }
        int ret = payService.pay(BigDecimal.valueOf(100.0));
        if(ret > 0){
            result = "支付成功";
            return result;
        }
        result = "支付失败,再试一次吧...";
        return result;
    }
}

最后,我们来创建mykit-ratelimiter-test项目的核心启动类,如下所示。

package io.mykit.limiter;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
/**
 * @author binghe
 * @version 1.0.0
 * @description 项目启动类
 */
@SpringBootApplication
public class MykitLimiterApplication {
    public static void main(String[] args){
        SpringApplication.run(MykitLimiterApplication.class, args);
    }
}

至此,我们不使用注解方式实现限流的Web应用就基本完成了。

运行项目

项目创建完成后,我们来运行项目,运行SpringBoot项目比较简单,直接运行MykitLimiterApplication类的main()方法即可。

项目运行成功后,我们在浏览器地址栏输入链接:http://localhost:8080/boot/pay。页面会输出“支付成功”的字样,说明项目搭建成功了。如下所示。

微信图片_20211119135410.jpg

此时,我只访问了一次,并没有触发限流。接下来,我们不停的刷浏览器,此时,浏览器会输出“支付失败,再试一次吧…”的字样,如下所示。

微信图片_20211119135412.jpg

在PayController类中还有一个sendMessage()方法,模拟的是发送消息的接口,同样使用了限流操作,具体代码如下所示。

@RequestMapping("/boot/send/message")
public String sendMessage(){
    //记录返回接口
    String result = "";
    //限流处理,客户端请求从桶中获取令牌,如果在500毫秒没有获取到令牌,则直接走服务降级处理
    boolean tryAcquire = rateLimiter.tryAcquire(500, TimeUnit.MILLISECONDS);
    if (!tryAcquire){
        result = "请求过多,降级处理";
        logger.info(result);
        return result;
    }
    boolean flag = messageService.sendMessage("恭喜您成长值+1");
    if (flag){
        result = "消息发送成功";
        return result;
    }
    result = "消息发送失败,再试一次吧...";
    return result;
}

sendMessage()方法的代码逻辑和运行效果与pay()方法相同,我就不再浏览器访问 http://localhost:8080/boot/send/message 地址的访问效果了,小伙伴们可以自行验证。

不使用注解实现限流缺点

通过对项目的编写,我们可以发现,当在项目中对接口进行限流时,不使用注解进行开发,会导致代码出现大量冗余,每个方法中几乎都要写一段相同的限流逻辑,代码十分冗余。

如何解决代码冗余的问题呢?我们可以使用自定义注解进行实现。

使用注解实现接口限流

使用自定义注解,我们可以将一些通用的业务逻辑封装到注解的切面中,在需要添加注解业务逻辑的方法上加上相应的注解即可。针对我们这个限流的实例来说,可以基于自定义注解实现。

实现自定义注解

实现,我们来创建一个自定义注解,如下所示。

package io.mykit.limiter.annotation;
import java.lang.annotation.*;
/**
 * @author binghe
 * @version 1.0.0
 * @description 实现限流的自定义注解
 */
@Target(value = ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
@Documented
public @interface MyRateLimiter {
    //向令牌桶放入令牌的速率
    double rate();
    //从令牌桶获取令牌的超时时间
    long timeout() default 0;
}

自定义注解切面实现

接下来,我们还要实现一个切面类MyRateLimiterAspect,如下所示。

package io.mykit.limiter.aspect;
import com.google.common.util.concurrent.RateLimiter;
import io.mykit.limiter.annotation.MyRateLimiter;
import org.aspectj.lang.ProceedingJoinPoint;
import org.aspectj.lang.annotation.Around;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Pointcut;
import org.aspectj.lang.reflect.MethodSignature;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.concurrent.TimeUnit;
/**
 * @author binghe
 * @version 1.0.0
 * @description 一般限流切面类
 */
@Aspect
@Component
public class MyRateLimiterAspect {
    private RateLimiter rateLimiter = RateLimiter.create(2);
    @Pointcut("execution(public * io.mykit.limiter.controller.*.*(..))")
    public void pointcut(){
    }
    /**
     * 核心切面方法
     */
    @Around("pointcut()")
    public Object process(ProceedingJoinPoint proceedingJoinPoint) throws Throwable{
        MethodSignature signature = (MethodSignature) proceedingJoinPoint.getSignature();
        //使用反射获取方法上是否存在@MyRateLimiter注解
        MyRateLimiter myRateLimiter = signature.getMethod().getDeclaredAnnotation(MyRateLimiter.class);
        if(myRateLimiter == null){
            //程序正常执行,执行目标方法
            return proceedingJoinPoint.proceed();
        }
        //获取注解上的参数
        //获取配置的速率
        double rate = myRateLimiter.rate();
        //获取客户端等待令牌的时间
        long timeout = myRateLimiter.timeout();
        //设置限流速率
        rateLimiter.setRate(rate);
        //判断客户端获取令牌是否超时
        boolean tryAcquire = rateLimiter.tryAcquire(timeout, TimeUnit.MILLISECONDS);
        if(!tryAcquire){
            //服务降级
            fullback();
            return null;
        }
        //获取到令牌,直接执行
        return proceedingJoinPoint.proceed();
    }
    /**
     * 降级处理
     */
    private void fullback() {
        response.setHeader("Content-type", "text/html;charset=UTF-8");
        PrintWriter writer = null;
        try {
            writer =  response.getWriter();
            writer.println("出错了,重试一次试试?");
            writer.flush();;
        } catch (IOException e) {
            e.printStackTrace();
        }finally {
            if(writer != null){
                writer.close();
            }
        }
    }
}

自定义切面的功能比较简单,我就不细说了,大家有啥问题可以关注【冰河技术】微信公众号来进行提问。

接下来,我们改造下PayController类中的sendMessage()方法,修改后的方法片段代码如下所示。

@MyRateLimiter(rate = 1.0, timeout = 500)
@RequestMapping("/boot/send/message")
public String sendMessage(){
    //记录返回接口
    String result = "";
    boolean flag = messageService.sendMessage("恭喜您成长值+1");
    if (flag){
        result = "消息发送成功";
        return result;
    }
    result = "消息发送失败,再试一次吧...";
    return result;
}

运行部署项目

部署项目比较简单,只需要运行MykitLimiterApplication类下的main()方法即可。这里,为了简单,我们还是从浏览器中直接输入链接地址来进行访问

效果如下所示。

微信图片_20211119135412.jpg

接下来,我们不断的刷新浏览器。会出现“消息发送失败,再试一次吧..”的字样,说明已经触发限流操作。

微信图片_20211119135441.jpg

基于限流算法实现限流的缺点

上面介绍的限流方式都只能用于单机部署的环境中,如果将应用部署到多台服务器进行分布式、集群,则上面限流的方式就不适用了,此时,我们需要使用分布式限流。至于在分布式场景下,如何实现限流操作,我们就在下一篇中进行介绍。

相关文章
|
1月前
|
JSON Java Apache
非常实用的Http应用框架,杜绝Java Http 接口对接繁琐编程
UniHttp 是一个声明式的 HTTP 接口对接框架,帮助开发者快速对接第三方 HTTP 接口。通过 @HttpApi 注解定义接口,使用 @GetHttpInterface 和 @PostHttpInterface 等注解配置请求方法和参数。支持自定义代理逻辑、全局请求参数、错误处理和连接池配置,提高代码的内聚性和可读性。
124 3
|
2月前
|
数据采集 前端开发 算法
Python Requests 的高级使用技巧:应对复杂 HTTP 请求场景
本文介绍了如何使用 Python 的 `requests` 库应对复杂的 HTTP 请求场景,包括 Spider Trap(蜘蛛陷阱)、SESSION 访问限制和请求频率限制。通过代理、CSS 类链接数控制、多账号切换和限流算法等技术手段,提高爬虫的稳定性和效率,增强在反爬虫环境中的生存能力。文中提供了详细的代码示例,帮助读者掌握这些高级用法。
111 1
Python Requests 的高级使用技巧:应对复杂 HTTP 请求场景
|
1月前
|
网络协议 前端开发 API
HTTP 和 TCP 协议的应用场景有哪些不同
【10月更文挑战第25天】HTTP(超文本传输协议)和 TCP(传输控制协议)处于网络协议栈的不同层次,各自具有独特的功能和特点,因此它们的应用场景也存在明显的差异。
|
6月前
|
安全 API 持续交付
阿里云云效产品使用问题之如何从流水线访问内网平台的HTTP接口
云效作为一款全面覆盖研发全生命周期管理的云端效能平台,致力于帮助企业实现高效协同、敏捷研发和持续交付。本合集收集整理了用户在使用云效过程中遇到的常见问题,问题涉及项目创建与管理、需求规划与迭代、代码托管与版本控制、自动化测试、持续集成与发布等方面。
|
6月前
|
运维 监控 Serverless
函数计算产品使用问题之HTTP触发器被恶意刷流量,该怎么办
函数计算产品作为一种事件驱动的全托管计算服务,让用户能够专注于业务逻辑的编写,而无需关心底层服务器的管理与运维。你可以有效地利用函数计算产品来支撑各类应用场景,从简单的数据处理到复杂的业务逻辑,实现快速、高效、低成本的云上部署与运维。以下是一些关于使用函数计算产品的合集和要点,帮助你更好地理解和应用这一服务。
|
2月前
|
JSON Java fastjson
Java Http 接口对接太繁琐?试试 UniHttp 框架吧
UniHttp 是一个声明式的 HTTP 接口对接框架,旨在简化第三方 HTTP 接口的调用过程。通过注解配置,开发者可以像调用本地方法一样发起 HTTP 请求,无需关注请求的构建和响应处理细节。框架支持多种请求方式和参数类型,提供灵活的生命周期钩子以满足复杂的对接需求,适用于企业级项目的快速开发和维护。GitHub 地址:[UniAPI](https://github.com/burukeYou/UniAPI)。
|
3月前
|
JSON 移动开发 监控
快速上手|HTTP 接口功能自动化测试
HTTP接口功能测试对于确保Web应用和H5应用的数据正确性至关重要。这类测试主要针对后台HTTP接口,通过构造不同参数输入值并获取JSON格式的输出结果来进行验证。HTTP协议基于TCP连接,包括请求与响应模式。请求由请求行、消息报头和请求正文组成,响应则包含状态行、消息报头及响应正文。常用的请求方法有GET、POST等,而响应状态码如2xx代表成功。测试过程使用Python语言和pycurl模块调用接口,并通过断言机制比对实际与预期结果,确保功能正确性。
271 3
快速上手|HTTP 接口功能自动化测试
|
2月前
|
Java 数据处理 开发者
Java Http 接口对接太繁琐?试试 UniHttp 框架~
【10月更文挑战第10天】在企业级项目开发中,HTTP接口对接是一项常见且重要的任务。传统的编程式HTTP客户端(如HttpClient、Okhttp)虽然功能强大,但往往需要编写大量冗长且复杂的代码,这对于项目的可维护性和可读性都是一个挑战。幸运的是,UniHttp框架的出现为这一问题提供了优雅的解决方案。
94 0
|
3月前
|
安全 网络安全 数据安全/隐私保护
HTTP与HTTPS协议区别及应用场景
在互联网高速发展的今天,HTTP与HTTPS作为数据传输的基石,作用至关重要。HTTP允许客户端与服务器间传输超文本文档,但其数据传输过程未加密,存在安全隐患;HTTPS则在此基础上加入了SSL/TLS协议,实现了数据加密传输,增强了安全性,广泛应用于电子商务、网上银行、政府网站及社交媒体平台等涉及敏感信息传输的领域,有效保护了用户隐私和数据安全。随着网络安全意识提升,HTTPS正逐渐成为主流。
|
4月前
|
负载均衡 中间件 Go
五分钟给你的 gRPC 服务加上 HTTP 接口
五分钟给你的 gRPC 服务加上 HTTP 接口