到2026年,利用 AI 的 AR 应用程序用户将超过两亿

简介: ABI Research 预计,到 2026 年,将有超过 2 亿活跃用户参与以某种形式利用人工智能 (AI) 的增强现实 (AR) 应用程序。

ABI Research 预计,到 2026 年,将有超过 2 亿活跃用户参与以某种形式利用人工智能 (AI) 的增强现实 (AR) 应用程序。这可能包括基础 AR 技术,如机器视觉和同步定位和映射 (SLAM) 跟踪,以及增值应用程序,如图像和对象识别、语义标记和专家系统分析。
530fe22675c4ea1ff4c0ece14602f19b.jpg

“人工智能、机器学习 (ML) 和 AR 的结合是一种非常有效的结合,”ABI Research 增强和虚拟现实研究主管 Eric Abbruzzese 说。 “从本质上讲,随着可用数据的增加,增强现实的功能会变得更强大。这些数据来自位置数据、传感器数据、环境动态以及物联网 (IoT) 等集成系统。 AR 还可以作为这些数据类型的数据收集推动者。将 AI 融入这些领域,可为市场带来高价值且通常是关键的 AR 功能。”

AR 对视觉和空间数据的需求通常依赖于 AI 支持技术,以可操作的方式捕获、处理和背景化该数据。因此,这两个市场继续重叠并创造大量机会。

根据 ABI Research 的说法,虽然 AR 本身并不需要机器视觉——在辅助现实硬件和应用程序的情况下——但它越来越成为大多数用例的必需品。支持 SLAM 跟踪的机器视觉允许在空间中进行精确的用户跟踪,还可以捕获空间数据供以后使用。

ABI Research 预计,到2026 年配备本地端 AI 芯片组的 AR 智能眼镜出货量将接近 2000 万部,占当年智能眼镜总出货量的 70%。 AI 的本地处理在当今最为常见,但对于某些 AI 处理类型,处理位置正越来越多地转移到云端。例如,SLAM 跟踪可以留在设备上以获得可靠性和低延迟,但语义标签可以位于云上,在非敏感延迟场景中为该类型的数据牺牲延迟。云计算和混合计算方案可实现最佳 AI 处理性能,而设备性能和电池寿命、灵活性取决于应用程序和环境。

多年来,AR 领域的许多公司一直在以多种方式利用 AI,而且这种使用在公司数量和使用范围方面都在增长。在硬件层面,高通在他们的 XR 芯片组系列中加入了专门针对 AR 和 VR 的 AI 增强功能——例如,以提高跟踪精度和性能。 NVIDIA 正在其 CloudXR 产品以及 Omniverse 中利用 AI,后者最近宣布使用 AI 进行自动化模拟和内容创建元素。 PTC 和 Teamviewer 等企业玩家使用机器视觉进行设备跟踪以及后端处理、分析、预测流程等。

这些元素总结为一种与整个增强现实价值链相协调的有价值的使能技术。

“指向用例、应用程序、服务或垂直领域,人工智能已经被利用,其作用将在未来 5 到 10 年内发生重大变化。 AI 增强了增强现实的常见附加价值,包括提高员工效率和安全性以及新颖的协作和远程启用功能。更准确和可预测的跟踪和数据收集、自动化和有针对性的内容交付、新发现的数据和使用趋势都会有所贡献,”Abbruzzese 总结道。


本文转载自51CTO,本文一切观点和机器智能技术圈子无关。原文链接
免费体验百种AI能力以及试用热门离线SDK:【点此跳转】

目录
相关文章
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在医疗领域的应用及其挑战
【10月更文挑战第34天】本文将探讨人工智能(AI)在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念入手,然后详细介绍其在医疗领域的各种应用,如疾病诊断、药物研发、患者护理等。最后,我们将讨论AI在医疗领域面临的主要挑战,包括数据隐私、算法偏见、法规合规等问题。
27 1
|
10天前
|
存储 XML 人工智能
深度解读AI在数字档案馆中的创新应用:高效识别与智能档案管理
基于OCR技术的纸质档案电子化方案,通过先进的AI能力平台,实现手写、打印、复古文档等多格式高效识别与智能归档。该方案大幅提升了档案管理效率,确保数据安全与隐私,为档案馆提供全面、智能化的电子化管理解决方案。
100 48
|
6天前
|
机器学习/深度学习 人工智能 算法
AI在医疗领域的应用与挑战
本文探讨了人工智能(AI)在医疗领域的应用,包括其在疾病诊断、治疗方案制定、患者管理等方面的优势和潜力。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题以及技术局限性等。通过对这些内容的深入分析,旨在为读者提供一个全面了解AI在医疗领域现状和未来发展的视角。
31 10
|
6天前
|
机器学习/深度学习 人工智能 监控
探索AI在医疗领域的应用与挑战
本文深入探讨了人工智能(AI)在医疗领域中的应用现状和面临的挑战。通过分析AI技术如何助力疾病诊断、治疗方案优化、患者管理等方面的创新实践,揭示了AI技术为医疗行业带来的变革潜力。同时,文章也指出了数据隐私、算法透明度、跨学科合作等关键问题,并对未来的发展趋势进行了展望。
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
【10月更文挑战第31天】2024年,AI大模型在软件开发领域的应用取得了显著进展,从自动化代码生成、智能代码审查到智能化测试,极大地提升了开发效率和代码质量。然而,技术挑战、伦理与安全问题以及模型可解释性仍是亟待解决的关键问题。开发者需不断学习和适应,以充分利用AI的优势。
|
9天前
|
人工智能 安全 测试技术
探索AI在软件开发中的应用:提升开发效率与质量
【10月更文挑战第31天】在快速发展的科技时代,人工智能(AI)已成为软件开发领域的重要组成部分。本文探讨了AI在代码生成、缺陷预测、自动化测试、性能优化和CI/CD中的应用,以及这些应用如何提升开发效率和产品质量。同时,文章也讨论了数据隐私、模型可解释性和技术更新等挑战。
|
5天前
|
存储 人工智能 固态存储
如何应对生成式AI和大模型应用带来的存储挑战
如何应对生成式AI和大模型应用带来的存储挑战
|
7天前
|
传感器 人工智能 算法
AI在农业中的应用:精准农业的发展
随着科技的发展,人工智能(AI)在农业领域的应用日益广泛,尤其在精准农业方面取得了显著成效。精准农业通过GPS、GIS、遥感技术和自动化技术,实现对农业生产过程的精确监测和控制,提高产量和品质,降低成本和环境影响。AI在作物生长监测、气候预测、智能农机、农产品品质检测和智能灌溉等方面发挥重要作用,推动农业向智能化、高效化和可持续化方向发展。尽管面临技术集成、数据共享等挑战,但未来前景广阔。
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
思通数科AI平台在尽职调查中的技术解析与应用
思通数科AI多模态能力平台结合OCR、NLP和深度学习技术,为IPO尽职调查、融资等重要交易环节提供智能化解决方案。平台自动识别、提取并分类海量文档,实现高效数据核验与合规性检查,显著提升审查速度和精准度,同时保障敏感信息管理和数据安全。
61 11