MySQL 8.0 InnoDB全文索引可用于生产环境吗

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,高可用系列 2核4GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: MySQL 8.0 InnoDB全文索引可用于生产环境吗
  • 0. 背景介绍
  • 1. 环境准备
  • 2. 导入数据
  • 3. 全文搜索
  • 4. 放弃治疗

0. 背景介绍

MySQL从5.6版本开始,InnoDB也支持全文索引(fulltext),从5.7开始新增ngram插件以支持对中文的全文索引,以及用MeCab解析日文。为了验证全文搜索的效果,我做了个简单的测试。

1. 环境准备

本次测试我采用的是MySQL 8.0.19版本。另外,即便有了ngram这个中文分词插件,但其实分词效果还是不太理想,所以我修改了几个参数:

ngram_token_size = 1
ft_min_word_len = 1
innodb_ft_min_token_size = 1

也就是最短的分词长度为1。

另外,innodb-buffer-pool-size我设置为10GB。

创建测试表:

[root@yejr.run]> CREATE TABLE `t_fulltxt` (
  id int unsigned NOT NULL,
  author varchar(100) NOT NULL,
  title varchar(100) NOT NULL,
  summary varchar(255) NOT NULL,
  bdata longtext,
  PRIMARY KEY (`id`),
  FULLTEXT KEY `k1` (`title`,`summary`,`bdata`) WITH PARSER ngram
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

2. 导入数据

我在某小说网站上下载了一批数据,并每个文件进行切分,保证每条记录里的中文数据不超过96KB,这样一个大文件就会被切分成多次导入。最后,共导入了约14万条数据,看下表统计信息:


         

索引文件都已经超过数据文件了,也超过了innodb buffer pool,可以预见其搜索的性能可能也不会太好。

3. 全文搜索

我拿几个关键词进行搜索测试,发现SQL执行耗时都特别大,不过搜索的相关性也还算有一定保证。先看下SQL的执行计划

[root@yejr.run]> show table status\G
           Name: t_fulltxt
         Engine: InnoDB
        Version: 10
     Row_format: Dynamic
           Rows: 136554
 Avg_row_length: 109696   --行平均长度107KB,太大了
    Data_length: 14574764032
Max_data_length: 0
   Index_length: 5275648
      Data_free: 5242880
 Auto_increment: NULL
    Create_time: 2020-04-29 20:27:44
    Update_time: 2020-04-30 01:25:20
     Check_time: NULL
      Collation: utf8mb4_0900_ai_ci
       Checksum: NULL
 Create_options:
        Comment:
#表空间文件有15GB
[root@yejr.run]# ls -l test/t_fulltxt.ibd
-rw-r----- 1 mysql mysql 15145631744 Apr 30 01:28 test/t_fulltxt.ibd
#索引文件加起来比表空间文件还要大(去掉部分无关信息)
..  1216348160 .. test/fts_000000000000050b_00000000000001b8_index_1.ibd
..      114688 .. test/fts_000000000000050b_00000000000001b8_index_2.ibd
..      114688 .. test/fts_000000000000050b_00000000000001b8_index_3.ibd
..      114688 .. test/fts_000000000000050b_00000000000001b8_index_4.ibd
..      114688 .. test/fts_000000000000050b_00000000000001b8_index_5.ibd
.. 15544090624 .. test/fts_000000000000050b_00000000000001b8_index_6.ibd
..      114688 .. test/fts_000000000000050b_being_deleted.ibd
..      114688 .. test/fts_000000000000050b_being_deleted_cache.ibd
..      114688 .. test/fts_000000000000050b_config.ibd
..      114688 .. test/fts_000000000000050b_deleted.ibd
..      114688 .. test/fts_000000000000050b_deleted_cache.ibd

上面这条SQL的目的是按全文搜索相关性,从小到大排序,取最小的前三条记录。再看这条SQL的实际耗时

[root@yejr.run]> EXPLAIN select id,cid,left(title,10) as title,left(author,10) as author,left(summary,10) as summary,instr(bdata,'艾伦') as pos,
            match(title,summary,bdata) AGAINST('艾伦' IN BOOLEAN MODE) as score
            from t_fulltxt where MATCH(title,summary,bdata) AGAINST('艾伦' IN NATURAL LANGUAGE MODE) and
            match(title,summary,bdata) AGAINST('艾伦' IN BOOLEAN MODE) >0 order by score LIMIT 3;
*************************** 1. row ***************************            
           id: 1
  select_type: SIMPLE
        table: t_fulltxt
   partitions: NULL
         type: fulltext
possible_keys: k1
          key: k1
      key_len: 0
          ref: const
         rows: 1
     filtered: 100.00
        Extra: Using where; Ft_hints: no_ranking; Using filesort

如果换成一个比较常见的词组搜索,则耗时要大很多:

# Query_time: 520.929179  Lock_time: 0.000142 Rows_sent: 3  Rows_examined: 141045
...
where MATCH(title,summary,bdata) AGAINST('时间' IN NATURAL LANGUAGE MODE)
...

另外,我们注意到,无论是在查看SQL执行计划,还是在执行搜索时,一开始都有这个状态

FULLTEXT initialization

The server is preparing to perform a natural-language full-text search.

如果是执行SQL查询,那么这个状态持续的时间会更久一些,有时甚至达到了几十上百秒。

在SQL执行期间,看了下服务器的负载数据

[root@yejr.run]# vmstat -S m 1
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
 r  b   swpd   free   buff  cache   si   so    bi    bo   in   cs us sy id wa st
 0  1    969    177      0   2386    0    0 155360     0 3859 5548  1  2 74 23  0
 0  1    969    173      0   2389    0    0 158420   262 4123 5873  1  2 74 23  0
 1  0    969    171      0   2400    0    0 146852  3071 4270 6085  1  4 71 24  0
 0  1    969    173      0   2398    0    0 106900  3160 3019 4765  1  2 74 24  0

物理I/O读太大了,看起来可能是因为innodb buffer pool不够,所以比较慢。不过,关键词查询过一次后,后面的查询就会相对快很多,例如上面的两个关键词在后面的查询大概只需要耗时1.5秒。然鹅,这是在表中数据不再发生变化的前提下。but,当表中数据发生变化后,再次执行查询的耗时又比较高了。这就像MySQL 8.0之前的Query Cache那样,让人很不爽了。

既然是因为innodb buffer pool不够导致比较慢,那么如果换成小表是不是会快一些呢。于是从原来的表中取1万条数据,插入到新表中。新标的全文索引也只有bdata列,不再包含title, summary两个列。新表大小1.1GB,索引文件1.4GB,都没超过innodb buffer pool。再次执行全文搜索查询,这次的的耗时的确提升了很多:

# Query_time: 0.349465  Lock_time: 0.000165 Rows_sent: 3  Rows_examined: 3
...
select id,cid,left(title,10) as title,left(author,10) as author,
left(summary,10) as summary,instr(bdata,'时间') as pos,
match(bdata) AGAINST('时间' IN BOOLEAN MODE) as score
from t2 where MATCH(bdata) AGAINST('时间' IN NATURAL LANGUAGE MODE) and
match(bdata) AGAINST('时间' IN BOOLEAN MODE) >0 LIMIT 3;

这个SQL相对于之前去掉了对score排序,所以相对还是快了点。不过,反复执行多次同样的SQL,执行耗时没办法继续下降了,基本上都维持这个值左右。用profile查看这个SQL的耗时,发现大部分是在 FULLTEXT initialization阶段:

+--------------------------------+----------+
| Status                         | Duration |
+--------------------------------+----------+
...
| FULLTEXT initialization        | 0.343885 |
| executing                      | 0.003677 |
...

4. 放弃治疗吧

从上面的几个简单测试中也能看出来MySQL的全文索引效率还是比较低,才十几万的数据量,每次出现新关键词的第一次查询耗时几乎无法承受,虽然后面重复查询好了一些,但如果是并发度稍高的场景里,估计又要歇菜了。即便是已经把整个全文索引都加载到innodb buffer pool中了,数据量也才一万条,查询效率也还是不如意。

测试下来,全文索引有几点不足之处:

  • 不支持online ddl,即:在DDL期间,会阻塞DML请求(此时只能只读查询)。
  • 首次创建全文索引时非常慢,因为此时需要重建整张表(见下方文档中的解释)。重建过程中,生成的临时文件是原表的数倍大小。
  • 按照文档中的说法,创建第二个全文索引应该不再需要重建整张表了,会快一些了。但实测依然要重建,还是慢的不能接受。
  • 官方文档中几乎没有关于全文搜索优化的内容。

MySQL文档中关于全文索引Online DDL的描述

Operation Instant In Place Rebuilds Table Permits Concurrent DML Only Modifies Metadata
Adding a FULLTEXT index No Yes* No* No No

Adding a FULLTEXT index

Adding the first FULLTEXT index rebuilds the table if there is no user-defined FTSDOCID column. Additional FULLTEXT indexes may be added without rebuilding the table.

文档链接:https://dev.mysql.com/doc/refman/8.0/en/innodb-online-ddl-operations.html#online-ddl-index-operations

最后,个人建议现在还不适合在MySQL里玩全文索引,先继续保持观望吧


相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
相关文章
|
23天前
|
存储 关系型数据库 MySQL
介绍MySQL的InnoDB引擎特性
总结而言 , Inno DB 引搞 是 MySQL 中 高 性 能 , 高 可靠 的 存 储选项 , 宽泛 应用于要求强 复杂交易处理场景 。
61 15
|
6月前
|
存储 网络协议 关系型数据库
MySQL8.4创建keyring给InnoDB表进行静态数据加密
MySQL8.4创建keyring给InnoDB表进行静态数据加密
150 1
|
5月前
|
机器学习/深度学习 关系型数据库 MySQL
对比MySQL全文索引与常规索引的互异性
现在,你或许明白了这两种索引的差异,但任何技术决策都不应仅仅基于理论之上。你可以创建你的数据库实验环境,尝试不同类型的索引,看看它们如何影响性能,感受它们真实的力量。只有这样,你才能熟悉它们,掌握什么时候使用全文索引,什么时候使用常规索引,以适应复杂多变的业务需求。
113 12
|
10月前
|
存储 缓存 关系型数据库
【MySQL进阶篇】存储引擎(MySQL体系结构、InnoDB、MyISAM、Memory区别及特点、存储引擎的选择方案)
MySQL的存储引擎是其核心组件之一,负责数据的存储、索引和检索。不同的存储引擎具有不同的功能和特性,可以根据业务需求 选择合适的引擎。本文详细介绍了MySQL体系结构、InnoDB、MyISAM、Memory区别及特点、存储引擎的选择方案。
1677 57
【MySQL进阶篇】存储引擎(MySQL体系结构、InnoDB、MyISAM、Memory区别及特点、存储引擎的选择方案)
|
6月前
|
SQL 缓存 关系型数据库
使用温InnoDB缓冲池启动MySQL测试
使用温InnoDB缓冲池启动MySQL测试
105 0
|
8月前
|
SQL 关系型数据库 MySQL
MySQL 中的全文索引:强大的文本搜索利器
MySQL 的全文索引是一种用于快速搜索大量文本数据的特殊索引。它通过对文本内容进行分析(如分词、去除停用词等)并构建倒排索引,实现高效查找。创建全文索引使用 `CREATE FULLTEXT INDEX`,搜索时使用 `MATCH AGAINST` 语句。适用于 `CHAR`、`VARCHAR`、`TEXT` 等字段,但需注意性能影响和正确使用搜索语法。
241 22
|
7月前
|
SQL 关系型数据库 MySQL
MySQL生产环境迁移至YashanDB数据库深度体验
这篇文章是作者将 MySQL 生产环境迁移至 YashanDB 数据库的深度体验。介绍了 YashanDB 迁移平台 YMP 的产品相关信息、安装步骤、迁移中遇到的各种兼容问题及解决方案,最后总结了迁移体验,包括工具部署和操作特点,也指出功能有优化空间及暂不支持的部分,期待其不断优化。
|
1月前
|
安全 关系型数据库 MySQL
MySQL安全最佳实践:保护你的数据库
本文深入探讨了MySQL数据库的安全防护体系,涵盖认证安全、访问控制、网络安全、数据加密、审计监控、备份恢复、操作系统安全、应急响应等多个方面。通过具体配置示例,为企业提供了一套全面的安全实践方案,帮助强化数据库安全,防止数据泄露和未授权访问,保障企业数据资产安全。
|
16天前
|
缓存 关系型数据库 BI
使用MYSQL Report分析数据库性能(下)
使用MYSQL Report分析数据库性能
54 3
|
23天前
|
关系型数据库 MySQL 数据库
自建数据库如何迁移至RDS MySQL实例
数据库迁移是一项复杂且耗时的工程,需考虑数据安全、完整性及业务中断影响。使用阿里云数据传输服务DTS,可快速、平滑完成迁移任务,将应用停机时间降至分钟级。您还可通过全量备份自建数据库并恢复至RDS MySQL实例,实现间接迁移上云。

热门文章

最新文章

推荐镜像

更多