什么是Stream?
Java8中有两大最为重要的改变。第一个是 Lambda 表达式;另外一个则是 Stream API(java.util.stream.*)。
Stream 是 Java8 中处理集合的关键抽象概念,它可以指定你希望对集合进行的操作,可以执行非常复杂的查找、过滤和映射数据等操作。使用Stream API 对集合数据进行操作,就类似于使用 SQL 执行的数据库查询。也可以使用 Stream API 来并行执行操作。简而言之,Stream API 提供了一种高效且易于使用的处理数据的方式
流是数据渠道,用于操作数据源(集合、数组等)所生成的元素序列。“集合讲的是数据,流讲的是计算!”
注意:
① Stream 自己不会存储元素。
② Stream 不会改变源对象。相反,他们会返回一个持有结果的新Stream。
③ Stream 操作是延迟执行的。这意味着他们会等到需要结果的时候才执行。
Stream操作的三个步骤
- 创建 Stream
一个数据源(如:集合、数组), 获取一个流。
- 中间操作
一个中间操作链,对数据源的数据进行处理。
- 终止操作(终端操作)
一个终止操作,执行中间操作链,并产生结果 。
如何创建Stream?
Java8 中的 Collection 接口被扩展,提供了两个获取流的方法:
1.获取Stream
- default Stream stream() : 返回一个顺序流
- default Stream parallelStream() : 返回一个并行流
2.由数组创建Stream
Java8 中的 Arrays 的静态方法 stream() 可以获取数组流:
- static Stream stream(T[] array): 返回一个流
重载形式,能够处理对应基本类型的数组:
- public static IntStream stream(int[] array)
- public static LongStream stream(long[] array)
- public static DoubleStream stream(double[] array)
3.由值创建流
可以使用静态方法 Stream.of(), 通过显示值创建一个流。它可以接收任意数量的参数。
- public static Stream of(T… values) : 返回一个流
4.由函数创建流
由函数创建流可以创建无限流。
可以使用静态方法 Stream.iterate() 和Stream.generate(), 创建无限流 。
- 迭代
public static Stream iterate(final T seed, final UnaryOperatorf)
- 生成
public static Stream generate(Suppliers)
Stream的中间操作
多个中间操作可以连接起来形成一个流水线,除非流水线上触发终止操作,否则中间操作不会执行任何的处理!而在终止操作时一次性全部处理,称为“惰性求值”
1.筛选与切片
2.映射
3.排序
Stream 的终止操作
终端操作会从流的流水线生成结果。其结果可以是任何不是流的值,例如:List、 Integer,甚至是 void 。
1.查找与匹配
2.规约
3.收集
Collector 接口中方法的实现决定了如何对流执行收集操作(如收集到 List、 Set、 Map)。但是 Collectors 实用类提供了很多静态方法,可以方便地创建常见收集器实例, 具体方法与实例如下表
并行流与串行流
并行流就是把一个内容分成多个数据块,并用不同的线程分别处理每个数据块的流。
Java 8 中将并行进行了优化,我们可以很容易的对数据进行并行操作。Stream API 可以声明性地通过 parallel() 与
sequential() 在并行流与顺序流之间进行切换
Fork/Join 框架
1.简单概述
Fork/Join 框架:就是在必要的情况下,将一个大任务,进行拆分(fork)成若干个小任务(拆到不可再拆时),再将一个个的小任务运算的结果进行 join 汇总.
2.Fork/Join 框架与传统线程池的区别
采用 “工作窃取”模式(work-stealing):
当执行新的任务时它可以将其拆分分成更小的任务执行,并将小任务加到线程队列中,然后再从一个随机线程的队列中偷一个并把它放在自己的队列中。
相对于一般的线程池实现,fork/join框架的优势体现在对其中包含的任务的处理方式上.在一般的线程池中,如果一个线程正在执行的任务由于某些原因无法继续运行,那么该线程会处于等待状态.而在fork/join框架实现中,如果某个子问题由于等待另外一个子问题的完成而无法继续运行.那么处理该子问题的线程会主动寻找其他尚未运行的子问题来执行.这种方式减少了线程的等待时间,提高了性能。