MySQL 5.7下InnoDB对COUNT(*)的优化

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: MySQL 5.7下InnoDB对COUNT(*)的优化

0、导读

饱受诟病的InnoDB表COUNT(*)性能问题在5.7下做了优化,果真如此吗?

1、经典需求:InnoDB表COUNT(*)

InnoDB引擎表经常被抱怨执行COUNT(*)的效率太差,因此此类需求通常会被建议用其他方法来满足,比如另外加一个计数器表,或者用SHOW TABLE STATUS查看大概数量。

不过,从MySQL 5.7.2起,这个问题得到了解决,我们来看看。

2、MySQL 5.7版本InnoDB对COUNT(*)的优化

MySQL每发布一个新版本,都会放出相应的Release Notes,我们注意到5.7.2版本的发布说明中提到:

InnoDB: SELECT COUNT(*) FROM t statements now invoke a single handler call to the storage engine to scan the clustered index and return the row count to the Optimizer. Previously, a row count was typically performed by traversing a smaller secondary index and invoking a handler call for each record. A single handler call to the storage engine to count rows in the clustered index generally improves SELECT COUNT(*) FROM t performance. However, in the case of a large clustered index and a significantly smaller secondary index, performance degradation is possible compared to performance using the previous, non-optimized implementation. For more information, see Limits on InnoDB Tables.

简单地说就是:COUNT(*)会选择聚集索引,进行一次内部handler函数调用,即可快速获得该表总数。我们可以通过执行计划看到这个变化,例如:

image.png

很明显,在查询优化器阶段就已经得到优化了,相比效率应该杠杠的吧,我们稍后再来对比看看。

补充说下,5.7以前的版本中,COUNT(*)请求通常是:扫描普通索引来获得这个总数。也来看看5.6下的执行计划是怎样的:

image.png

可以看到,可以利用覆盖索引来完成COUNT(*)请求。

3、对比测试

先看一组测试数据:

count(*)对比测试

MySQL 5.6.33

MySQL 5.7.15

相差

表数据量

8976914

9000270

100.26%

耗时(秒)

5.459952

1.142340

20.92%

可以看到,两次数据量相当,但SQL耗时5.7约只有5.6的1/5,这个效率还是不错的吧。

我们来看看5.6和5.7版本下的status和profiling对比情况:

image.png

4、别高兴得太早

看完上面的对比测试,相信您已经心动了吧,但还别高兴得太早哦,官方文档里其实埋了一个伏笔:

InnoDB: SELECT COUNT(*) FROM t statements now invoke a single handler call to the storage engine to scan the clustered index and return the row count to the Optimizer. Previously, a row count was typically performed by traversing a smaller secondary index and invoking a handler call for each record. A single handler call to the storage engine to count rows in the clustered index generally improves SELECT COUNT(*) FROM t performance. However, in the case of a large clustered index and a significantly smaller secondary index, performance degradation is possible compared to performance using the previous, non-optimized implementation. For more information, see Limits on InnoDB Tables.

简言之,就是说如果聚集索引较大(或者说表数据量较大),没有完全加载到buffer pool中的话,有可能反而会更慢,还不如用原先的方式。

下面我们来测试下,读取tpcc测试表stock,该表有1亿行记录,表空间文件约65GB,而innodb buffer pool只分配了12G,这时候再看下对比数据:

count(*)对比测试

MySQL 5.6.33

MySQL 5.7.15

相差

表数据量

1亿

1亿

0.00%

耗时(秒)

693.66

5331.69

768.63%

在这种情况下,5.7版本反而慢的夸张,悲剧啊~

那么在5.7下的大表,有没有办法仍旧采用以前的方法来做COUNT(*)统计呢。当然可以了,我们可以强制指定普通索引,不过还需要加上WHERE条件,否则还是不行。后来搜了下,发现这是个bug,印风(zhaiwx)已经报告给官方了,bug id:81854。

image.png

这次的SQL执行耗时和在5.6下的就基本一样了。

4、后记

5.7版本整体挺赞的,不过还是有不少地方需要完善,期待能更成熟起来。

参考

1. MySQL 5.7.2 Release Notes:http://dev.mysql.com/doc/relnotes/mysql/5.7/en/news-5-7-2.html

2. Limits on InnoDB Tableshttp://dev.mysql.com/doc/refman/5.7/en/innodb-restrictions.html



相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
16天前
|
SQL 关系型数据库 MySQL
深入解析MySQL的EXPLAIN:指标详解与索引优化
MySQL 中的 `EXPLAIN` 语句用于分析和优化 SQL 查询,帮助你了解查询优化器的执行计划。本文详细介绍了 `EXPLAIN` 输出的各项指标,如 `id`、`select_type`、`table`、`type`、`key` 等,并提供了如何利用这些指标优化索引结构和 SQL 语句的具体方法。通过实战案例,展示了如何通过创建合适索引和调整查询语句来提升查询性能。
117 9
|
8天前
|
存储 缓存 关系型数据库
【MySQL进阶篇】存储引擎(MySQL体系结构、InnoDB、MyISAM、Memory区别及特点、存储引擎的选择方案)
MySQL的存储引擎是其核心组件之一,负责数据的存储、索引和检索。不同的存储引擎具有不同的功能和特性,可以根据业务需求 选择合适的引擎。本文详细介绍了MySQL体系结构、InnoDB、MyISAM、Memory区别及特点、存储引擎的选择方案。
【MySQL进阶篇】存储引擎(MySQL体系结构、InnoDB、MyISAM、Memory区别及特点、存储引擎的选择方案)
|
13天前
|
存储 关系型数据库 MySQL
“COUNT(*) MyISAM比InnoDB更快”是误解
在我印象中,MyISAM的查询速度比InnoDB快,但根据MySQL官网文章,从5.7版本开始,InnoDB性能大幅提升,在8.0中持续优化。InnoDB提供更好的性能、可靠性和可扩展性,支持ACID事务、行级锁定、崩溃恢复等特性,成为现代应用的默认选择。尤其在高可用性和灾难恢复方面,InnoDB是唯一选择。云服务也普遍不支持MyISAM。因此,建议使用MyISAM的用户尽早迁移到InnoDB以获得更佳性能和可靠性。
40 11
|
20天前
|
缓存 关系型数据库 MySQL
MySQL 索引优化以及慢查询优化
通过本文的介绍,希望您能够深入理解MySQL索引优化和慢查询优化的方法,并在实际应用中灵活运用这些技术,提升数据库的整体性能。
60 18
|
13天前
|
存储 关系型数据库 MySQL
MySQL存储引擎详述:InnoDB为何胜出?
MySQL 是最流行的开源关系型数据库之一,其存储引擎设计是其高效灵活的关键。InnoDB 作为默认存储引擎,支持事务、行级锁和外键约束,适用于高并发读写和数据完整性要求高的场景;而 MyISAM 不支持事务,适合读密集且对事务要求不高的应用。根据不同需求选择合适的存储引擎至关重要,官方推荐大多数场景使用 InnoDB。
57 7
|
19天前
|
缓存 关系型数据库 MySQL
MySQL 索引优化以及慢查询优化
通过本文的介绍,希望您能够深入理解MySQL索引优化和慢查询优化的方法,并在实际应用中灵活运用这些技术,提升数据库的整体性能。
22 7
|
18天前
|
缓存 关系型数据库 MySQL
MySQL 索引优化与慢查询优化:原理与实践
通过本文的介绍,希望您能够深入理解MySQL索引优化与慢查询优化的原理和实践方法,并在实际项目中灵活运用这些技术,提升数据库的整体性能。
50 5
|
22天前
|
存储 关系型数据库 MySQL
Mysql索引:深入理解InnoDb聚集索引与MyisAm非聚集索引
通过本文的介绍,希望您能深入理解InnoDB聚集索引与MyISAM非聚集索引的概念、结构和应用场景,从而在实际工作中灵活运用这些知识,优化数据库性能。
98 7
|
2月前
|
存储 Oracle 关系型数据库
【赵渝强老师】MySQL InnoDB的数据文件与重做日志文件
本文介绍了MySQL InnoDB存储引擎中的数据文件和重做日志文件。数据文件包括`.ibd`和`ibdata`文件,用于存放InnoDB数据和索引。重做日志文件(redo log)确保数据的可靠性和事务的持久性,其大小和路径可由相关参数配置。文章还提供了视频讲解和示例代码。
155 11
【赵渝强老师】MySQL InnoDB的数据文件与重做日志文件
|
29天前
|
存储 关系型数据库 MySQL
MySQL引擎InnoDB和MyISAM的区别?
InnoDB是MySQL默认的事务型存储引擎,支持事务、行级锁、MVCC、在线热备份等特性,主索引为聚簇索引,适用于高并发、高可靠性的场景。MyISAM设计简单,支持压缩表、空间索引,但不支持事务和行级锁,适合读多写少、不要求事务的场景。
57 9