如何计算卷积的Size

简介: 如何计算卷积的Size

卷积神将网络的计算公式为:

N=(W-F+2P)/S+1

其中N:输出大小

W:输入大小

F:卷积核大小

P:填充值的大小

S:步长大小

举例:


nn.Conv2d(in_channels=3,out_channels=96,kernel_size=12,stride=4,padding=2)



in_channels=3:表示的是输入的通道数,由于是RGB型的,所以通道数是3.

out_channels=96:表示的是输出的通道数,设定输出通道数的96(这个是可以根据自己的需要来设置的)

kernel_size=12:表示卷积核的大小是12x12的,也就是上面的 “F”, F=12

stride=4:表示的是步长为4,也就是上面的S, S=4

padding=2:表示的是填充值的大小为2,也就是上面的P, P=2


假如你的图像的输入size是256x256的,由计算公式知N=(256-12+2x2)/4+1=63,也就是输出size为63x63x96


目录
相关文章
|
4月前
|
机器学习/深度学习 编解码 计算机视觉
【YOLOv10改进-卷积Conv】 SPD-Conv空间深度转换卷积,处理低分辨率图像和小对象问题
YOLO目标检测专栏探讨了CNN在低分辨率和小目标检测中的局限性,提出SPD-Conv新架构,替代步长卷积和池化层,通过空间到深度层和非步长卷积保持细粒度信息。创新点包括消除信息损失、通用设计和性能提升。YOLOv5和ResNet应用SPD-Conv后,在困难任务上表现优越。详情见YOLO有效改进系列及项目实战目录。
|
4月前
|
机器学习/深度学习 算法 计算机视觉
【YOLOv10改进 -卷积Conv】 AKConv(可改变核卷积):任意数量的参数和任意采样形状的即插即用的卷积
AKConv是一种可改变核卷积,旨在解决传统卷积的局限,包括固定大小的卷积窗口和卷积核尺寸。AKConv提供灵活的卷积核参数和采样形状,适应不同尺度特征。其创新点包括:1)支持任意大小和形状的卷积核;2)使用新算法确定初始采样位置;3)应用动态偏移调整采样位置;4)优化模型参数和计算效率。AKConv已应用于YOLOv8,提高网络性能。相关代码可在<https://github.com/CV-ZhangXin/AKConv>找到。
|
4月前
|
计算机视觉
【YOLOv10改进-卷积Conv】动态蛇形卷积(Dynamic Snake Convolution)用于管状结构分割任务
YOLOv10专栏介绍了一种用于精确分割管状结构的新方法DSCNet,它结合了动态蛇形卷积、多视角融合和拓扑连续性约束损失。DSConv创新地聚焦细长局部结构,增强管状特征感知,而多视角融合和TCLoss则改善了全局形态理解和分割连续性。在2D和3D数据集上的实验显示,DSCNet在血管和道路等分割任务上超越了传统方法。DySnakeConv模块整合到YOLOv10中,提升了目标检测的准确性。[链接指向详细文章](https://blog.csdn.net/shangyanaf/article/details/140007047)
|
5月前
|
机器学习/深度学习 计算机视觉
YOLOv8改进 | 卷积模块 | 用坐标卷积CoordConv替换Conv
💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡
|
6月前
|
机器学习/深度学习 计算机视觉
YOLOv8改进 | 2023 | FocalModulation替换SPPF(精度更高的空间金字塔池化)
YOLOv8改进 | 2023 | FocalModulation替换SPPF(精度更高的空间金字塔池化)
318 2
|
6月前
|
机器学习/深度学习 计算机视觉
YOLOv5改进 | 2023 | FocalModulation替换SPPF(精度更高的空间金字塔池化)
YOLOv5改进 | 2023 | FocalModulation替换SPPF(精度更高的空间金字塔池化)
266 0
|
6月前
|
机器学习/深度学习 编解码 监控
YOLOv5改进 | 卷积篇 | SPD-Conv空间深度转换卷积(高效空间编码技术)
YOLOv5改进 | 卷积篇 | SPD-Conv空间深度转换卷积(高效空间编码技术)
791 0
|
6月前
|
机器学习/深度学习 编解码 监控
YOLOv8改进 | 2023 | SPD-Conv空间深度转换卷积(高效空间编码技术)
YOLOv8改进 | 2023 | SPD-Conv空间深度转换卷积(高效空间编码技术)
360 0
|
机器学习/深度学习 PyTorch 算法框架/工具
base model初始化large model,造成的参数矩阵对不上权重不匹配问题+修改预训练权重形状和上采样
base model初始化large model,造成的参数矩阵对不上权重不匹配问题+修改预训练权重形状和上采样
212 0
|
机器学习/深度学习
最大值池化与均值池化比较分析
最大值池化与均值池化比较分析
132 0