[MySQL优化案例]系列 — slave延迟很大优化方法

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: [MySQL优化案例]系列 — slave延迟很大优化方法

备注:插图来自网络搜索,如果觉得不当还请及时告知 :)


一般而言,slave相对master延迟较大,其根本原因就是slave上的复制线程没办法真正做到并发。简单说,在master上是并发模式(以InnoDB引擎为主)完成事务提交的,而在slave上,复制线程只有一个sql thread用于binlog的apply,所以难怪slave在高并发时会远落后master。


ORACLE MySQL 5.6版本开始支持多线程复制,配置选项 slave_parallel_workers 即可实现在slave上多线程并发复制。不过,它只能支持一个实例下多个 database 间的并发复制,并不能真正做到多表并发复制。因此在较大并发负载时,slave还是没有办法及时追上master,需要想办法进行优化。


另一个重要原因是,传统的MySQL复制是异步(asynchronous)的,也就是说在master提交完后,才在slave上再应用一遍,并不是真正意义上的同步。哪怕是后来的Semi-sync Repication(半同步复制),也不是真同步,因为它只保证事务传送到slave,但没要求等到确认事务提交成功。既然是异步,那肯定多少会有延迟。因此,严格意义上讲,MySQL复制不能叫做MySQL同步(处女座的面试官有可能会在面试时把说成MySQL同步的一律刷掉哦)。


另外,不少人的观念里,slave相对没那么重要,因此就不会提供和master相同配置级别的服务器。有的甚至不但使用更差的服务器,而且还在上面跑多实例。


综合这两个主要原因,slave想要尽可能及时跟上master的进度,可以尝试采用以下几种方法:

  1. 采用MariaDB发行版,它实现了相对真正意义上的并行复制,其效果远比ORACLE MySQL好的很多。在我的场景中,采用MariaDB作为slave的实例,几乎总是能及时跟上master。如果不想用这个版本的话,那就老实等待官方5.7大版本发布吧;
    关于MariaDB的Parallel Replication具体请参考:Replication and Binary Log Server System Variables#slave_parallel_threads - MariaDB Knowledge Base
  2. 每个表都要显式指定主键,如果没有指定主键的话,会导致在row模式下,每次修改都要全表扫描,尤其是大表就非常可怕了,延迟会更严重,甚至导致整个slave库都被挂起,可参考案例:mysql主键的缺少导致备库hang
  3. 应用程序端多做些事,让MySQL端少做事,尤其是和IO相关的活动,例如:前端通过内存CACHE或者本地写队列等,合并多次读写为一次,甚至消除一些写请求;
  4. 进行合适的分库、分表策略,减小单库单表复制压力,避免由于单库单表的的压力导致整个实例的复制延迟;
  5. 其他提高IOPS性能的几种方法,根据效果优劣,我做了个简单排序:
  • 更换成SSD,或者PCIe SSD等IO设备,其IOPS能力的提升是普通15K SAS盘的数以百倍、万倍,甚至几十万倍计;
  • 加大物理内存,相应提高InnoDB Buffer Pool大小,让更多热数据放在内存中,降低发生物理IO的频率;
  • 调整文件系统为 XFS 或 ReiserFS,相比ext3可以极大程度提高IOPS能力。在高IOPS压力下,相比ext4有更稳健的IOPS表现(有人认为 XFS 在特别的场景下会有很大的问题,但我们除了剩余磁盘空间少于10%时引发丢数据外,其他的尚未遇到);
  • 调整RAID级别为raid 1+0,它相比raid1、raid5等更能提高IOPS性能。如果已经全部是SSD设备了,可以2块盘做成RAID 1,或者多快盘做成RAID 5(并且可以设置全局热备盘,提高阵列容错性),甚至有些土豪用户直接将多块SSD盘组成RAID 50;
  • 调整RAID的写cache策略为WB或FORCE WB,详情请参考:常用PC服务器阵列卡、硬盘健康监控 以及 PC服务器阵列卡管理简易手册
  • 调整内核的io scheduler,优先使用deadline,如果是SSD,则可以使用noop策略,相比默认的cfq,个别情况下对IOPS的性能提升至少是数倍的。

其他更多方法,欢迎大家帮忙补充 :)



相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
25天前
|
存储 关系型数据库 MySQL
环比、环比增长率、同比、同比增长率 ,占比,Mysql 8.0 实例(最简单的方法之一)(sample database classicmodels _No.2 )
环比、环比增长率、同比、同比增长率 ,占比,Mysql 8.0 实例(最简单的方法之一)(sample database classicmodels _No.2 )
86 1
|
1天前
|
SQL 关系型数据库 MySQL
MySQL慢查询优化、索引优化、以及表等优化详解
本文详细介绍了MySQL优化方案,包括索引优化、SQL慢查询优化和数据库表优化,帮助提升数据库性能。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
MySQL慢查询优化、索引优化、以及表等优化详解
|
5天前
|
缓存 监控 关系型数据库
如何优化MySQL查询速度?
如何优化MySQL查询速度?【10月更文挑战第31天】
20 3
|
8天前
|
缓存 关系型数据库 MySQL
如何优化 MySQL 数据库的性能?
【10月更文挑战第28天】
28 1
|
15天前
|
NoSQL 关系型数据库 MySQL
MySQL与Redis协同作战:百万级数据统计优化实践
【10月更文挑战第21天】 在处理大规模数据集时,传统的单体数据库解决方案往往力不从心。MySQL和Redis的组合提供了一种高效的解决方案,通过将数据库操作与高速缓存相结合,可以显著提升数据处理的性能。本文将分享一次实际的优化案例,探讨如何利用MySQL和Redis共同实现百万级数据统计的优化。
46 9
|
9天前
|
关系型数据库 MySQL
Mysql 中日期比较大小的方法有哪些?
在 MySQL 中,可以通过多种方法比较日期的大小,包括使用比较运算符、NOW() 函数、DATEDIFF 函数和 DATE 函数。这些方法可以帮助你筛选出特定日期范围内的记录,确保日期格式一致以避免错误。
|
15天前
|
NoSQL 关系型数据库 MySQL
MySQL与Redis协同作战:优化百万数据查询的实战经验
【10月更文挑战第13天】 在处理大规模数据集时,传统的关系型数据库如MySQL可能会遇到性能瓶颈。为了提升数据处理的效率,我们可以结合使用MySQL和Redis,利用两者的优势来优化数据查询。本文将分享一次实战经验,探讨如何通过MySQL与Redis的协同工作来优化百万级数据统计。
42 5
|
15天前
|
关系型数据库 MySQL 数据库
一个 MySQL 数据库死锁的案例和解决方案
本文介绍了一个 MySQL 数据库死锁的案例和解决方案。
19 3
|
18天前
|
存储 关系型数据库 MySQL
基于案例分析 MySQL 权限认证中的具体优先原则
【10月更文挑战第26天】本文通过具体案例分析了MySQL权限认证中的优先原则,包括全局权限、数据库级别权限和表级别权限的设置与优先级。全局权限优先于数据库级别权限,后者又优先于表级别权限。在权限冲突时,更严格的权限将被优先执行,确保数据库的安全性与资源合理分配。
|
20天前
|
存储 关系型数据库 MySQL
优化 MySQL 的锁机制以提高并发性能
【10月更文挑战第16天】优化 MySQL 锁机制需要综合考虑多个因素,根据具体的应用场景和需求进行针对性的调整。通过不断地优化和改进,可以提高数据库的并发性能,提升系统的整体效率。
28 1
下一篇
无影云桌面