[MySQL优化案例]系列 — slave延迟很大优化方法

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: [MySQL优化案例]系列 — slave延迟很大优化方法

备注:插图来自网络搜索,如果觉得不当还请及时告知 :)


一般而言,slave相对master延迟较大,其根本原因就是slave上的复制线程没办法真正做到并发。简单说,在master上是并发模式(以InnoDB引擎为主)完成事务提交的,而在slave上,复制线程只有一个sql thread用于binlog的apply,所以难怪slave在高并发时会远落后master。


ORACLE MySQL 5.6版本开始支持多线程复制,配置选项 slave_parallel_workers 即可实现在slave上多线程并发复制。不过,它只能支持一个实例下多个 database 间的并发复制,并不能真正做到多表并发复制。因此在较大并发负载时,slave还是没有办法及时追上master,需要想办法进行优化。


另一个重要原因是,传统的MySQL复制是异步(asynchronous)的,也就是说在master提交完后,才在slave上再应用一遍,并不是真正意义上的同步。哪怕是后来的Semi-sync Repication(半同步复制),也不是真同步,因为它只保证事务传送到slave,但没要求等到确认事务提交成功。既然是异步,那肯定多少会有延迟。因此,严格意义上讲,MySQL复制不能叫做MySQL同步(处女座的面试官有可能会在面试时把说成MySQL同步的一律刷掉哦)。


另外,不少人的观念里,slave相对没那么重要,因此就不会提供和master相同配置级别的服务器。有的甚至不但使用更差的服务器,而且还在上面跑多实例。


综合这两个主要原因,slave想要尽可能及时跟上master的进度,可以尝试采用以下几种方法:

  1. 采用MariaDB发行版,它实现了相对真正意义上的并行复制,其效果远比ORACLE MySQL好的很多。在我的场景中,采用MariaDB作为slave的实例,几乎总是能及时跟上master。如果不想用这个版本的话,那就老实等待官方5.7大版本发布吧;
    关于MariaDB的Parallel Replication具体请参考:Replication and Binary Log Server System Variables#slave_parallel_threads - MariaDB Knowledge Base
  2. 每个表都要显式指定主键,如果没有指定主键的话,会导致在row模式下,每次修改都要全表扫描,尤其是大表就非常可怕了,延迟会更严重,甚至导致整个slave库都被挂起,可参考案例:mysql主键的缺少导致备库hang
  3. 应用程序端多做些事,让MySQL端少做事,尤其是和IO相关的活动,例如:前端通过内存CACHE或者本地写队列等,合并多次读写为一次,甚至消除一些写请求;
  4. 进行合适的分库、分表策略,减小单库单表复制压力,避免由于单库单表的的压力导致整个实例的复制延迟;
  5. 其他提高IOPS性能的几种方法,根据效果优劣,我做了个简单排序:
  • 更换成SSD,或者PCIe SSD等IO设备,其IOPS能力的提升是普通15K SAS盘的数以百倍、万倍,甚至几十万倍计;
  • 加大物理内存,相应提高InnoDB Buffer Pool大小,让更多热数据放在内存中,降低发生物理IO的频率;
  • 调整文件系统为 XFS 或 ReiserFS,相比ext3可以极大程度提高IOPS能力。在高IOPS压力下,相比ext4有更稳健的IOPS表现(有人认为 XFS 在特别的场景下会有很大的问题,但我们除了剩余磁盘空间少于10%时引发丢数据外,其他的尚未遇到);
  • 调整RAID级别为raid 1+0,它相比raid1、raid5等更能提高IOPS性能。如果已经全部是SSD设备了,可以2块盘做成RAID 1,或者多快盘做成RAID 5(并且可以设置全局热备盘,提高阵列容错性),甚至有些土豪用户直接将多块SSD盘组成RAID 50;
  • 调整RAID的写cache策略为WB或FORCE WB,详情请参考:常用PC服务器阵列卡、硬盘健康监控 以及 PC服务器阵列卡管理简易手册
  • 调整内核的io scheduler,优先使用deadline,如果是SSD,则可以使用noop策略,相比默认的cfq,个别情况下对IOPS的性能提升至少是数倍的。

其他更多方法,欢迎大家帮忙补充 :)



相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
1月前
|
SQL 关系型数据库 MySQL
深入解析MySQL的EXPLAIN:指标详解与索引优化
MySQL 中的 `EXPLAIN` 语句用于分析和优化 SQL 查询,帮助你了解查询优化器的执行计划。本文详细介绍了 `EXPLAIN` 输出的各项指标,如 `id`、`select_type`、`table`、`type`、`key` 等,并提供了如何利用这些指标优化索引结构和 SQL 语句的具体方法。通过实战案例,展示了如何通过创建合适索引和调整查询语句来提升查询性能。
177 9
|
2月前
|
SQL 关系型数据库 MySQL
大厂面试官:聊下 MySQL 慢查询优化、索引优化?
MySQL慢查询优化、索引优化,是必知必备,大厂面试高频,本文深入详解,建议收藏。关注【mikechen的互联网架构】,10年+BAT架构经验分享。
大厂面试官:聊下 MySQL 慢查询优化、索引优化?
|
13天前
|
SQL 关系型数据库 MySQL
MySQL派生表合并优化的原理和实现
通过本文的详细介绍,希望能帮助您理解和实现MySQL中派生表合并优化,提高数据库查询性能。
51 16
|
14天前
|
SQL 关系型数据库 MySQL
MySQL派生表合并优化的原理和实现
通过本文的详细介绍,希望能帮助您理解和实现MySQL中派生表合并优化,提高数据库查询性能。
33 7
|
26天前
|
SQL 存储 关系型数据库
MySQL/SqlServer跨服务器增删改查(CRUD)的一种方法
通过上述方法,MySQL和SQL Server均能够实现跨服务器的增删改查操作。MySQL通过联邦存储引擎提供了直接的跨服务器表访问,而SQL Server通过链接服务器和分布式查询实现了灵活的跨服务器数据操作。这些技术为分布式数据库管理提供了强大的支持,能够满足复杂的数据操作需求。
78 12
|
29天前
|
存储 缓存 关系型数据库
MySQL的count()方法慢
MySQL的 `COUNT()`方法在处理大数据量时可能会变慢,主要原因包括数据量大、缺乏合适的索引、InnoDB引擎的设计以及复杂的查询条件。通过创建合适的索引、使用覆盖索引、缓存机制、分区表和预计算等优化方案,可以显著提高 `COUNT()`方法的执行效率,确保数据库查询性能的提升。
661 12
|
1天前
|
缓存 关系型数据库 MySQL
【深入了解MySQL】优化查询性能与数据库设计的深度总结
本文详细介绍了MySQL查询优化和数据库设计技巧,涵盖基础优化、高级技巧及性能监控。
10 0
|
1月前
|
缓存 关系型数据库 MySQL
MySQL 索引优化以及慢查询优化
通过本文的介绍,希望您能够深入理解MySQL索引优化和慢查询优化的方法,并在实际应用中灵活运用这些技术,提升数据库的整体性能。
79 18
|
28天前
|
存储 关系型数据库 MySQL
10个案例告诉你mysql不使用子查询的原因
大家好,我是V哥。上周与朋友讨论数据库子查询问题,深受启发。为此,我整理了10个案例,详细说明如何通过优化子查询提升MySQL性能。主要问题包括性能瓶颈、索引失效、查询优化器复杂度及数据传输开销等。解决方案涵盖使用EXISTS、JOIN、IN操作符、窗口函数、临时表及索引优化等。希望通过这些案例,帮助大家在实际开发中选择更高效的查询方式,提升系统性能。关注V哥,一起探讨技术,欢迎点赞支持!
142 5
|
1月前
|
缓存 关系型数据库 MySQL
MySQL 索引优化以及慢查询优化
通过本文的介绍,希望您能够深入理解MySQL索引优化和慢查询优化的方法,并在实际应用中灵活运用这些技术,提升数据库的整体性能。
75 7