你知道如何实现分布式锁吗?这边看:分布式锁服务插件——mykit-lock开源啦!

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 框架简述mykit架构中独立出来的mykit-lock组件,旨在提供高并发架构下分布式系统的分布式锁架构。

框架简述

mykit架构中独立出来的mykit-lock组件,旨在提供高并发架构下分布式系统的分布式锁架构。

分布式锁是控制分布式系统之间同步访问共享资源的一种方式。在分布式系统中,常常需要协调他们的动作。如果不同的系统或是同一个系统的不同主机之间共享了一个或一组资源,那么访问这些资源的时候,往往需要互斥来防止彼此干扰来保证一致性,在这种情况下,便需要使用到分布式锁。

框架结构描述

对高并发下的分布式系统访问共享资源提供分布式锁操作,使用者只需要加入简单的注解便可轻松对共享资源加分布式锁。

目前主要以Redis的形式实现分布式锁操作,后续扩展其他方式

  • mykit-lock-redis

mykit-lock架构下以Redis方式实现分布式锁

  • mykit-lock-redis-core

mykit-lock-redis 架构下的核心模块,主要提供通用的注解、自定义异常类和工具类

  • mykit-lock-redis-single

mykit-lock-redis 架构下主要以Redis单节点形式实现分布式锁

  • mykit-lock-redis-cluster

mykit-lock-redis 架构下主要以Redis集群形式实现分布式锁,待完善

  • mykit-lock-test

mykit-lock的测试模块

  • mykit-lock-test-redis-single

主要测试以Redis单节点形式实现分布式锁

测试的入口为:io.mykit.lock.test.redis.single

使用说明

1、引用mykit-lock-redis-single说明

1)在pom.xml中添加如下配置:

<dependency>
    <groupId>io.mykit.lock</groupId>
    <artifactId>mykit-lock-redis-single</artifactId>
    <version>1.0-SNAPSHOT</version>
</dependency>

2)在项目的classpath/properties目录下配置redis-lock.properties


在项目的classpath/properties目录下创建redis-lock.properties(注意:配置文件的名称必须为redis-lock.properties),文件中的配置项的Key必须包含以下内容:

redis.maxIdle=100
redis.minIdle=1
redis.maxTotal=1000
redis.host=127.0.0.1
redis.port=6379

3)定义需要分布式锁支持的接口

package io.mykit.lock.test.redis.single.service;
import io.mykit.lock.redis.annotation.CacheLock;
import io.mykit.lock.redis.annotation.LockedObject;
/**
 * @author binghe
 * @version 1.0.0
 * @description 商品秒杀Service
 */
public interface SeckillService {
    @CacheLock(lockedPrefix="TEST_PREFIX")
    public void secKill(String arg1,@LockedObject Long arg2);
}

4)实现需要分布式锁支持接口的类

package io.mykit.lock.test.redis.single.service.impl;
import io.mykit.lock.test.redis.single.service.SeckillService;
import java.util.HashMap;
import java.util.Map;
/**
 * @author binghe
 * @version 1.0.0
 * @description 商品秒杀实现
 */
public class SeckillServiceImpl implements SeckillService {
    public static Map<Long, Long> inventory ;
    static{
        inventory = new HashMap<>();
        inventory.put(10000001L, 10000l);
        inventory.put(10000002L, 10000l);
    }
    @Override
    public void secKill(String arg1, Long arg2) {
        reduceInventory(arg2);
    }
    //模拟秒杀操作,姑且认为一个秒杀就是将库存减一,实际情景要复杂的多
    public Long reduceInventory(Long commodityId){
        inventory.put(commodityId,inventory.get(commodityId) - 1);
        return inventory.get(commodityId);
    }
}

分布式锁概念补充

业务场景


所谓秒杀,从业务角度看,是短时间内多个用户“争抢”资源,这里的资源在大部分秒杀场景里是商品;将业务抽象,技术角度看,秒杀就是多个线程对资源进行操作,所以实现秒杀,就必须控制线程对资源的争抢,既要保证高效并发,也要保证操作的正确。一些可能的实现


刚才提到过,实现秒杀的关键点是控制线程对资源的争抢,根据基本的线程知识,可以不加思索的想到下面的一些方法:


1、秒杀在技术层面的抽象应该就是一个方法,在这个方法里可能的操作是将商品库存-1,将商品加入用户的购物车等等,在不考虑缓存的情况下应该是要操作数据库的。那么最简单直接的实现就是在这个方法上加上synchronized关键字,通俗的讲就是锁住整个方法;

2、锁住整个方法这个策略简单方便,但是似乎有点粗暴。可以稍微优化一下,只锁住秒杀的代码块,比如写数据库的部分;

3、既然有并发问题,那我就让他“不并发”,将所有的线程用一个队列管理起来,使之变成串行操作,自然不会有并发问题。


上面所述的方法都是有效的,但是都不好。为什么?第一和第二种方法本质上是“加锁”,但是锁粒度依然比较高。什么意思?试想一下,如果两个线程同时执行秒杀方法,这两个线程操作的是不同的商品,从业务上讲应该是可以同时进行的,但是如果采用第一二种方法,这两个线程也会去争抢同一个锁,这其实是不必要的。第三种方法也没有解决上面说的问题。那么如何将锁控制在更细的粒度上呢?可以考虑为每个商品设置一个互斥锁,以和商品ID相关的字符串为唯一标识,这样就可以做到只有争抢同一件商品的线程互斥,不会导致所有的线程互斥。分布式锁恰好可以帮助我们解决这个问题。

何为分布式锁


分布式锁是控制分布式系统之间同步访问共享资源的一种方式。在分布式系统中,常常需要协调他们的动作。如果不同的系统或是同一个系统的不同主机之间共享了一个或一组资源,那么访问这些资源的时候,往往需要互斥来防止彼此干扰来保证一致性,在这种情况下,便需要使用到分布式锁。


我们来假设一个最简单的秒杀场景:数据库里有一张表,column分别是商品ID,和商品ID对应的库存量,秒杀成功就将此商品库存量-1。现在假设有1000个线程来秒杀两件商品,500个线程秒杀第一个商品,500个线程秒杀第二个商品。我们来根据这个简单的业务场景来解释一下分布式锁。


通常具有秒杀场景的业务系统都比较复杂,承载的业务量非常巨大,并发量也很高。这样的系统往往采用分布式的架构来均衡负载。那么这1000个并发就会是从不同的地方过来,商品库存就是共享的资源,也是这1000个并发争抢的资源,这个时候我们需要将并发互斥管理起来。这就是分布式锁的应用。

而key-value存储系统,如redis,因为其一些特性,是实现分布式锁的重要工具。

具体的实现


先来看看一些redis的基本命令:


  • SETNX key value  


如果key不存在,就设置key对应字符串value。在这种情况下,该命令和SET一样。当key已经存在时,就不做任何操作。SETNX是”SET if Not eXists”。


  • expire KEY seconds


设置key的过期时间。如果key已过期,将会被自动删除。


  • del KEY


删除key

需要考虑的问题


1、用什么操作redis?幸亏redis已经提供了jedis客户端用于java应用程序,直接调用jedis API即可。


2、怎么实现加锁?“锁”其实是一个抽象的概念,将这个抽象概念变为具体的东西,就是一个存储在redis里的key-value对,key是商品ID相关的字符串来唯一标识,value其实并不重要,因为只要这个唯一的key-value存在,就表示这个商品已经上锁。


3、如何释放锁?既然key-value对存在就表示上锁,那么释放锁就自然是在redis里删除key-value对。


4、阻塞还是非阻塞?笔者采用了阻塞式的实现,若线程发现已经上锁,会在特定时间内轮询锁。


5、如何处理异常情况?比如一个线程把一个商品上了锁,但是由于各种原因,没有完成操作(在上面的业务场景里就是没有将库存-1写入数据库),自然没有释放锁,这个情况笔者加入了锁超时机制,利用redis的expire命令为key设置超时时长,过了超时时间redis就会将这个key自动删除,即强制释放锁(可以认为超时释放锁是一个异步操作,由redis完成,应用程序只需要根据系统特点设置超时时间即可)

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
相关文章
|
7月前
|
NoSQL Java 中间件
【📕分布式锁通关指南 02】基于Redis实现的分布式锁
本文介绍了从单机锁到分布式锁的演变,重点探讨了使用Redis实现分布式锁的方法。分布式锁用于控制分布式系统中多个实例对共享资源的同步访问,需满足互斥性、可重入性、锁超时防死锁和锁释放正确防误删等特性。文章通过具体示例展示了如何利用Redis的`setnx`命令实现加锁,并分析了简化版分布式锁存在的问题,如锁超时和误删。为了解决这些问题,文中提出了设置锁过期时间和在解锁前验证持有锁的线程身份的优化方案。最后指出,尽管当前设计已解决部分问题,但仍存在进一步优化的空间,将在后续章节继续探讨。
953 131
【📕分布式锁通关指南 02】基于Redis实现的分布式锁
|
4月前
|
Apache
分布式锁—7.Curator的分布式锁
本文详细解析了Apache Curator库中多种分布式锁的实现机制,包括可重入锁、非可重入锁、可重入读写锁、MultiLock和Semaphore。可重入锁通过InterProcessMutex实现,支持同一线程多次加锁,锁的获取和释放通过Zookeeper的临时顺序节点实现。非可重入锁InterProcessSemaphoreMutex基于Semaphore实现,确保同一时间只有一个线程获取锁。可重入读写锁InterProcessReadWriteLock通过组合读锁和写锁实现,支持读写分离。Multi
|
6月前
|
消息中间件 人工智能 监控
文生图架构设计原来如此简单之分布式服务
想象一下,当成千上万的用户同时要求AI画图,如何公平高效地处理这些请求?文生图/图生图大模型的架构设计看似复杂,实则遵循简单而有效的原则:合理排队、分工明确、防患未然。
214 14
文生图架构设计原来如此简单之分布式服务
|
11月前
|
存储 缓存 算法
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
376 3
|
7月前
|
NoSQL Java 测试技术
【📕分布式锁通关指南 05】通过redisson实现分布式锁
本文介绍了如何使用Redisson框架在SpringBoot中实现分布式锁,简化了之前通过Redis手动实现分布式锁的复杂性和不完美之处。Redisson作为Redis的高性能客户端,封装了多种锁的实现,使得开发者只需关注业务逻辑。文中详细展示了引入依赖、配置Redisson客户端、实现扣减库存功能的代码示例,并通过JMeter压测验证了其正确性。后续篇章将深入解析Redisson锁实现的源码。
171 0
【📕分布式锁通关指南 05】通过redisson实现分布式锁
|
7月前
|
运维 NoSQL 算法
【📕分布式锁通关指南 04】redis分布式锁的细节问题以及RedLock算法原理
本文深入探讨了基于Redis实现分布式锁时遇到的细节问题及解决方案。首先,针对锁续期问题,提出了通过独立服务、获取锁进程自己续期和异步线程三种方式,并详细介绍了如何利用Lua脚本和守护线程实现自动续期。接着,解决了锁阻塞问题,引入了带超时时间的`tryLock`机制,确保在高并发场景下不会无限等待锁。最后,作为知识扩展,讲解了RedLock算法原理及其在实际业务中的局限性。文章强调,在并发量不高的场景中手写分布式锁可行,但推荐使用更成熟的Redisson框架来实现分布式锁,以保证系统的稳定性和可靠性。
288 0
【📕分布式锁通关指南 04】redis分布式锁的细节问题以及RedLock算法原理
|
8月前
|
NoSQL 关系型数据库 MySQL
分布式系统学习9:分布式锁
本文介绍了分布式系统中分布式锁的概念、实现方式及其应用场景。分布式锁用于在多个独立的JVM进程间确保资源的互斥访问,具备互斥、高可用、可重入和超时机制等特点。文章详细讲解了三种常见的分布式锁实现方式:基于Redis、Zookeeper和关系型数据库(如MySQL)。其中,Redis适合高性能场景,推荐使用Redisson库;Zookeeper适用于对一致性要求较高的场景,建议基于Curator框架实现;而基于数据库的方式性能较低,实际开发中较少使用。此外,还探讨了乐观锁和悲观锁的区别及适用场景,并介绍了如何通过Lua脚本和Redis的`SET`命令实现原子操作,以及Redisson的自动续期机
856 7
|
7月前
|
人工智能 监控 开发者
阿里云PAI发布DeepRec Extension,打造稳定高效的分布式训练,并宣布开源!
阿里云PAI发布DeepRec Extension,打造稳定高效的分布式训练,并宣布开源!
117 0
|
9月前
|
消息中间件 存储 安全
分布式系统架构3:服务容错
分布式系统因其复杂性,故障几乎是必然的。那么如何让系统在不可避免的故障中依然保持稳定?本文详细介绍了分布式架构中7种核心的服务容错策略,包括故障转移、快速失败、安全失败等,以及它们在实际业务场景中的应用。无论是支付场景的快速失败,还是日志采集的安全失败,每种策略都有自己的适用领域和优缺点。此外,文章还为技术面试提供了解题思路,助你在关键时刻脱颖而出。掌握这些策略,不仅能提升系统健壮性,还能让你的技术栈更上一层楼!快来深入学习,走向架构师之路吧!
212 12
|
10月前
|
消息中间件 监控 数据可视化
Apache Airflow 开源最顶级的分布式工作流平台
Apache Airflow 是一个用于创作、调度和监控工作流的平台,通过将工作流定义为代码,实现更好的可维护性和协作性。Airflow 使用有向无环图(DAG)定义任务,支持动态生成、扩展和优雅的管道设计。其丰富的命令行工具和用户界面使得任务管理和监控更加便捷。适用于静态和缓慢变化的工作流,常用于数据处理。
Apache Airflow 开源最顶级的分布式工作流平台

热门文章

最新文章