什么样的硬件设备在支撑 Stack Overflow?

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 我更愿意把 Stack Overflow 看作是能够运行于大规模数据下,但本身并不算大规模的(running with scale but not at scale)。意思是我们的网站非常有效率,但至少目前为止,我们的规模还不够“大”。让我们通过一些数字来介绍Stack Overflow当前是一个怎样的规模吧。以下是一些核心的数字,来自于不久前在一整天(24小时)内的统计,准确说是2013年11月12日。这是一个典型的工作日,并且只统计了我们活动的数据中心,也就是我们自己的服务器。那些对CDN节点的请求和流量被排除在外,因为它们并不直接访问我们的网络。

我更愿意把 Stack Overflow 看作是能够运行于大规模数据下,但本身并不算大规模的(running with scale but not at scale)。意思是我们的网站非常有效率,但至少目前为止,我们的规模还不够“大”。让我们通过一些数字来介绍Stack Overflow当前是一个怎样的规模吧。以下是一些核心的数字,来自于不久前在一整天(24小时)内的统计,准确说是2013年11月12日。这是一个典型的工作日,并且只统计了我们活动的数据中心,也就是我们自己的服务器。那些对CDN节点的请求和流量被排除在外,因为它们并不直接访问我们的网络。


  • 负载均衡器接受了148,084,833次HTTP请求
  • 其中36,095,312次是加载页面
  • 833,992,982,627 bytes (776 GB) 的HTTP流量用于发送
  • 总共接收了286,574,644,032 bytes (267 GB) 数据
  • 总共发送了1,125,992,557,312 bytes (1,048 GB) 数据
  • 334,572,103次SQL查询(仅包含来自于HTTP请求的)
  • 412,865,051次Redis请求
  • 3,603,418次标签引擎请求
  • 耗时558,224,585 ms (155 hours) 在SQL查询上
  • 耗时99,346,916 ms (27 hours) 在Redis请求上
  • 耗时132,384,059 ms (36 hours) 在标签引擎请求上
  • 耗时2,728,177,045 ms (757 hours) 在ASP.Net程序处理上


(我觉得应该发表一篇文章介绍我们如何快速采集这些数据,以及为什么值得耗费精力去获取它们)


注意以上数字包括了整个Stack Exchange网络,但那并不是我们全部的。除此之外,这些数字也仅仅来自于我们为了检测性能而记录的HTTP请求。“哇,一天有这么多个小时,你们怎么做到的?”我们把这叫做魔法,当然有些人喜欢说成“许多个有多核处理器的服务器”,但我们依然坚持这是魔法。以下是那个数据中心里运行Stack Exchange网络的设备:



有图有真相:

image.png

我们不仅仅运行网站,旁边架子上还有一些运行着虚拟机的服务器和其他设备,它们并不直接服务于网站,而是进行部署、域名控制、监控、操作数据库等其他工作。上面列表中的两个数据库服务器之前一直都是用作备份,直到最近才作为只读的负载(主要用于Stack Exchange API),于是我们可以不需要太多考虑便继续扩大规模了。Web服务器有两个分别用于开发和存储元数据,运行负载非常低。


核心设备

如果除去那些多余的设备,以下是Stack Exchange运行需要的(保持目前的性能水平):


  • 2个MS SQL服务器(Stack Overflow在一台,其他的在另一台,实际上只需一台机器运行还能有富余)
  • 2个Web服务器(或许3个吧,不过我有信心2个足矣)
  • 1个Redis服务器
  • 1个标签引擎服务器
  • 1个ElasticSearch服务器
  • 1个负载均衡器
  • 1个交换机
  • 1个ASA
  • 1个路由器


(我们真该找个机会尝试这个配置,关闭部分设备,看看极限在哪)

现在还有一些虚拟机运行在后台,执行一些辅助功能,比如域名控制等等。但那都是些相当低负载的任务,我们就不做讨论了,这里把重心放在Stack Overflow本身,看看它是怎样全速加载出页面的。如果你希望更精确全面,可以增加一个VMware虚拟机进来,用于执行所有的辅助工作。这样看来并不需要很多机器,但是这些机器的规格通常在云上难以实现,除非你有足够多的钱。以下是这些“增强型”服务器简要的配置介绍:


  • 数据库服务器有384GB内存和1.8TB的SSD硬盘
  • Redis服务器有96GB内存
  • ElasticSearch服务器有196GB内存
  • 标签引擎服务器有着我们能买得起的最快的处理器
  • 交换机每个端口有10Gb的带宽
  • Web服务器不是很特别,有32GB内存、2个4核处理器和300GB的SSD硬盘
  • 有些服务器有2个10Gb带宽的接口(比如数据库),其他有4个1Gb带宽的
  • 20Gb的带宽太多余了?你还真特么说对了,活动的数据库服务器平均只利用了20Gb通道中的100-200Mb。然而,像备份、重建等等操作,* 根据当前内存和SSD硬盘的情况,可以使带宽完全饱和,所以说这样设计还是有意义的。


存储设备

我们目前有大约2TB的数据库存储(第一个集群有18块SSD硬盘—— 总共1.63TB,使用1.06TB;第二个集群由4块SSD硬盘组成—— 总共1.45TB,使用889GB),这是我们在云服务器上需要的(嗯哼,又要吐槽价格了吧),请记住这全部都是SSD硬盘。归功于存储器良好的表现,我们数据库的平均写入时间是0毫秒,甚至超出我们能度量的精度了。算上内存中的数据以及两级缓存,Stack Overflow中实际的数据库读写比例是40:60。你没看错,60%是写操作(点此了解读写比)。此外,每个Web服务器都有两块320GB SSD硬盘组成的RAID1。ElasticSearch在每个区块大约需要300GB的容量,由于我们会非常频繁的写入或重建索引,SSD硬盘在这里是更好的选择。


值得注意的是我们拥有一个SAN(存储区域网络)连接到核心网络,那就是 Equal Logic PS6110X,它有24个可热交换的10K SAS磁盘和2个10Gb的控制器。这个设备仅仅被VM服务器用作共享储存空间以保证虚拟机高度的可用性,但并不实际支撑网站的运行。换句话说,如果SAN挂掉了,在一段时间内网站甚至无法察觉(只有虚拟机中的域名控制器能感知到)。


整合到一起

这所有的设备在一起是为了什么?性能。我们需要很高的性能,这是一个对我们来说很重要的特性。所有站点的首页都是问题页面,我们内部把它亲切地称作Question/Show(路由的名字)。在11月12日,这个页面平均渲染时间是28毫秒,而我们的要求是至多50ms。为了使用户获得更好的体验,我们尽一切可能缩短页面加载的时间,哪怕只有一毫秒。在和性能有关的问题上,我们所有的开发人员都是“锱铢必较”的,这也有助于我们的网站保持快速响应。以下是一些Stack Overflow上热门页面的平均渲染时间,数据还是来自于前面统计的那24小时:


  • Question/Show: 28 ms (2970万次点击)
  • User Profiles: 39 ms (170万次点击)
  • Question List: 78 ms (110万次点击)
  • Home page: 65 ms (100万次点击) (这对我们来说已经很慢了,Kevin Montrose正在着手修复这个问题


凭借对每一次请求的时间线的记录,我们能够准确观察到页面加载的过程。我们需要这样的数据,否则难道靠脑补来做决定吗?有数据在手,我们就可以这样监控性能:

image.png

如果你对某个特定页面的数据感兴趣,我也很乐意发布出来。但这里我重点关注渲染时间,因为它表示我们的服务器需要多久来生成一个网页。网络传输速度是一个完全不同的话题了(尽管不得不承认它也有很大的关系),不过将来我会讲到的。


增长空间

非常值得一提的是我们这些服务器运行时的使用率都非常低。比如Web服务器的CPU平均使用率为5-15%,内存只使用了15.5GB,网络流量只有20-40Mb/s;而数据库服务器CPU平均使用率为5-10%,使用了365GB内存,以及100-200Mb/s的网络。这使我们能做到几件重要的事情:在网站规模增大时不至于需要马上升级设备;当出现问题时(错误的查询、代码以及攻击等等,无论是什么样的问题),我们能保持网站始终不挂;在必要的时候降低功耗。这里有个我们Web层的监控项目

image.png

利用率如此之低的主要原因是高效的代码。尽管本文的主题并不是这个,但是高效的代码对挖掘服务器的性能也有着决定性的作用。做一件非必要的事情所损失的,居然比无所作为还要多——把这引申到代码中就是说,你需要把它们改进得更高效了。这些损失或者消耗可以是能源、硬件(你需要更多更快的服务器)、开发人员理解代码更困难(平心而论,这个有两面性,高效的代码并不一定那么简单),以及缓慢的页面渲染——可能导致用户更少地浏览网站其他页面甚至再也不访问你的网站了。低效率代码带来的损失可能比你想象的大很多。


现在我们了解了Stack Overflow运行在怎样的硬件上,下次可以讨论一下为何我们不使用云。

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
3月前
|
机器学习/深度学习 人工智能 物联网
操作系统的未来:探索下一代技术的边界
【8月更文挑战第9天】随着科技的飞速发展,操作系统作为计算机硬件与软件之间的桥梁,其重要性日益凸显。本文将深入探讨操作系统的发展趋势,包括云计算、人工智能、物联网等新兴技术对操作系统的影响和挑战。我们将从操作系统的基本功能出发,分析当前主流操作系统的特点及其局限性,进而展望未来操作系统可能的发展方向。通过本文,读者将获得对操作系统未来发展的深刻洞察,以及对相关技术变革的理解。
57 11
|
11月前
|
芯片
一款专为POS机设计的芯片解决方案
一、基本概述 HCM8003设计用于磁条读卡器系统。它会从F/2F恢复时钟和数据信号磁产生的数据流头HCM8003将用于数据速率从200到15000比特每秒。 二、典型电路 内部数据的采集和跟踪这个范围是自动的。可以应用于POS机终端设备、磁卡门禁系统、身份识别等场合。 三、引脚定义 四、内部功能框图 HCM8003由每个通道的三个主要模块组成: 放大模块 该块放大并过滤从读磁头读取的信号,拒绝共模噪声并检测信号峰值。它还包括保护电路组件。并锁存到数据速率上,并从F/2F执行单个位的恢复数据流。 A/D转换器模块 输入模拟信号经放大器放大后,将转换为数字F/2F信号通过A/
102 1
在 Stack Overflow 远程办公是一种怎样的体验?
在Stack Overflow,我们经常会探讨为什么信任远程工作这种方式,而且结果显示,我们已经在远程工作方面取得了不错的成果。事实上,2016年我们针对各个公司开展的一项调查显示,有88%的远程工作人员反映自己高度、全面地参与到了公司的运作过程
2964 0
下一篇
无影云桌面