Python 并行任务技巧

简介: Python的并发处理能力臭名昭著。先撇开线程以及GIL方面的问题不说,我觉得多线程问题的根源不在技术上而在于理念。大部分关于Pyhon线程和多进程的资料虽然都很不错,但却过于细节。这些资料讲的都是虎头蛇尾,到了真正实际使用的部分却草草结束了。

Python的并发处理能力臭名昭著。先撇开线程以及GIL方面的问题不说,我觉得多线程问题的根源不在技术上而在于理念。大部分关于Pyhon线程和多进程的资料虽然都很不错,但却过于细节。这些资料讲的都是虎头蛇尾,到了真正实际使用的部分却草草结束了。


传统例子

在DDG https://duckduckgo.com/ 搜索“Python threading tutorial”关键字,结果基本上却都是相同的类+队列的示例。

标准线程多进程,生产者/消费者示例:

image.png

这里是代码截图,如果用其他模式贴出大段代码会很不美观。文本模式点这里 here

Mmm.. 感觉像是java代码


在此我不想印证采用生产者/消费者模式来处理线程/多进程是错误的— 确实没问题。实际上这也是解决很多问题的最佳选择。但是,我却不认为这是日常工作中常用的方式。


问题所在

一开始,你需要一个执行下面操作的铺垫类。接着,你需要创建一个传递对象的队列,并在队列两端实时监听以完成任务。(很有可能需要两个队列互相通信或者存储数据)

Worker越多,问题越大.

下一步,你可能会考虑把这些worker放入一个线程池一边提高Python的处理速度。下面是

IBM tutorial 上关于线程较好的示例代码。这是大家常用到的利用多线程处理web页面的场景

image.png

Seriously, Medium. Fix your code support. Code is Here.

感觉效果应该很好,但是看看这些代码!初始化方法、线程跟踪,最糟的是,如果你也和我一样是个容易犯死锁问题的人,这里的join语句就要出错了。这样就开始变得更加复杂了!

到现在为止都做了些什么?基本上没什么。上面的代码都是些基础功能,而且很容易出错。(天啊,我忘了写上在队列对象上调用task_done()方法(我懒得修复这个问题在重新截图)),这真是性价比太低。所幸的是,我们有更好的办法.


引入:Map

Map 是个很酷的小功能,也是简化Python并发代码的关键。对那些不太熟悉Map的来说,它有点类似Lisp.它就是序列化的功能映射功能. e.g.

urls = [', ']

results = map(urllib2.urlopen, urls)

这里调用urlopen方法,并把之前的调用结果全都返回并按顺序存储到一个集合中。这有点类似

results = []

for url in urls:

   results.append(urllib2.urlopen(url))

Map能够处理集合按顺序遍历,最终将调用产生的结果保存在一个简单的集合当中。

为什么要提到它?因为在引入需要的包文件后,Map能大大简化并发的复杂度!

image.png

支持Map并发的包文件有两个:

Multiprocessing,还有少为人知的但却功能强大的子文件 multiprocessing.dummy. .

Digression这是啥东西?没听说过线程引用叫dummy的多进程包文件。我也是直到最近才知道。它在多进程的说明文档中也只被提到了一句。它的效果也只是让大家直到有这么个东西而已。这可真是营销的失误!


Dummy是一个多进程包的完整拷贝。唯一不同的是,多进程包使用进程,而dummy使用线程(自然也有Python本身的一些限制)。所以一个有的另一个也有。这样在两种模式间切换就十分简单,并且在判断框架调用时使用的是IO还是CPU模式非常有帮助。


准备开始

准备使用带有并发的map功能首先要导入相关包文件:

from multiprocessing import Pool

from multiprocessing.dummy import Pool as ThreadPool

然后初始化:

pool= ThreadPool()

就这么简单一句解决了example2.py中build_worker_pool的功能. 具体来讲,它首先创建一些有效的worker启动它并将其保存在一些变量中以便随时访问。

pool对象需要一些参数,但现在最紧要的就是:进程。它可以限定线程池中worker的数量。如果不填,它将采用系统的内核数作为初值。

一般情况下,如果你进行的是计算密集型多进程任务,内核越多意味着速度越快(当然这是有前提的)。但如果是涉及到网络计算方面,影响的因素就千差万别。所以最好还是能给出合适的线程池大小数。

pool = ThreadPool(4) # Sets the pool size to 4

如果运行的线程很多,频繁的切换线程会十分影响工作效率。所以最好还是能通过调试找出任务调度的时间平衡点。

好的,既然已经建好了线程池对象还有那些简单的并发内容。咱们就来重写一些example2.py中的url opener吧!

image.png

看吧!只用4行代码就搞定了!其中三行还是固定写法。使用map方法简单的搞定了之前需要40行代码做的事!为了增加趣味性,我分别统计了不同线程池大小的运行时间。

image.png

结果:

image.png

效果惊人!看来调试一下确实很有用。当线程池大小超过9以后,在我本机上的运行效果已相差无几。


示例 2:

生成上千张图像的缩略图:

现在咱们看一年计算密集型的任务!我最常遇到的这类问题之一就是大量图像文件夹的处理。

其中一项任务就是创建缩略图。这也是并发中比较成熟的一项功能了。

基础单线程创建过程

image.png

作为示例来说稍微有点复杂。但其实就是传一个文件夹目录进来,获取到里面所有的图片,分别创建好缩略图然后保存到各自的目录当中。

在我的电脑上,处理大约6000张图片大约耗时27.9秒.

如果使用并发map处理替代其中的for循环:

image.png


只用了5.6 秒!

就改了几行代码速度却能得到如此巨大的提升。最终版本的处理速度还要更快。因为我们将计算密集型与IO密集型任务分派到各自独立的线程和进程当中,这也许会容易造成死锁,但相对于map强劲的功能,通过简单的调试我们最终总能设计出优美、高可靠性的程序。就现在而言,也别无它法。


好了。来感受一下一行代码的并发程序吧。

相关文章
|
3月前
|
数据采集 缓存 Java
Python vs Java:爬虫任务中的效率比较
Python vs Java:爬虫任务中的效率比较
|
4月前
|
开发框架 并行计算 算法
揭秘Python并发神器:IO密集型与CPU密集型任务的异步革命,你竟还傻傻分不清?
揭秘Python并发神器:IO密集型与CPU密集型任务的异步革命,你竟还傻傻分不清?
56 4
|
3月前
|
监控 并行计算 数据处理
构建高效Python应用:并发与异步编程的实战秘籍,IO与CPU密集型任务一网打尽!
在Python编程的征途中,面对日益增长的性能需求,如何构建高效的应用成为了每位开发者必须面对的课题。并发与异步编程作为提升程序性能的两大法宝,在处理IO密集型与CPU密集型任务时展现出了巨大的潜力。今天,我们将深入探讨这些技术的最佳实践,助你打造高效Python应用。
48 0
|
27天前
|
数据采集 存储 监控
21个Python脚本自动执行日常任务(2)
21个Python脚本自动执行日常任务(2)
86 7
21个Python脚本自动执行日常任务(2)
|
30天前
|
Python
Python中的函数是**一种命名的代码块,用于执行特定任务或计算
Python中的函数是**一种命名的代码块,用于执行特定任务或计算
49 18
|
1月前
|
数据采集 分布式计算 大数据
构建高效的数据管道:使用Python进行ETL任务
在数据驱动的世界中,高效地处理和移动数据是至关重要的。本文将引导你通过一个实际的Python ETL(提取、转换、加载)项目,从概念到实现。我们将探索如何设计一个灵活且可扩展的数据管道,确保数据的准确性和完整性。无论你是数据工程师、分析师还是任何对数据处理感兴趣的人,这篇文章都将成为你工具箱中的宝贵资源。
|
2月前
|
运维 监控 网络安全
自动化运维的崛起:如何利用Python脚本简化日常任务
【10月更文挑战第43天】在数字化时代的浪潮中,运维工作已从繁琐的手工操作转变为高效的自动化流程。本文将引导您了解如何运用Python编写脚本,以实现日常运维任务的自动化,从而提升工作效率和准确性。我们将通过一个实际案例,展示如何使用Python来自动部署应用、监控服务器状态并生成报告。文章不仅适合运维新手入门,也能为有经验的运维工程师提供新的视角和灵感。
|
2月前
|
运维 监控 Python
自动化运维:使用Python脚本简化日常任务
【10月更文挑战第36天】在数字化时代,运维工作的效率和准确性成为企业竞争力的关键。本文将介绍如何通过编写Python脚本来自动化日常的运维任务,不仅提高工作效率,还能降低人为错误的风险。从基础的文件操作到进阶的网络管理,我们将一步步展示Python在自动化运维中的应用,并分享实用的代码示例,帮助读者快速掌握自动化运维的核心技能。
104 3
|
2月前
|
运维 监控 Linux
自动化运维:如何利用Python脚本优化日常任务##
【10月更文挑战第29天】在现代IT运维中,自动化已成为提升效率、减少人为错误的关键技术。本文将介绍如何通过Python脚本来简化和自动化日常的运维任务,从而让运维人员能够专注于更高层次的工作。从备份管理到系统监控,再到日志分析,我们将一步步展示如何编写实用的Python脚本来处理这些任务。 ##
|
2月前
|
调度 数据库 Python
掌握Python中的异步编程,提升I/O密集型任务的性能
掌握Python中的异步编程,提升I/O密集型任务的性能
47 0