最短路径问题(迪杰斯特拉)算法

简介: 最短路径问题(迪杰斯特拉)算法

定义

所谓最短路径问题是指:如果从图中某一顶点(源点)到达另一顶点(终点)的路径可能不止一条,如何找到一条路径使得沿此路径上各边的权值总和(称为路径长度)达到最小。


Dijkstra(迪杰斯特拉)算法

他的算法思想是按路径长度递增的次序一步一步并入来求取,是贪心算法的一个应用,用来解决单源点到其余顶点的最短路径问题。


Dijkstra(迪杰斯特拉)算法示例:


2020082613521451.png

第1步:初始化距离,其实指与D直接连接的点的距离。dis[c]代表D到C点的最短距离,因而初始dis[C]=3,dis[E]=4,dis[D]=0,其余为无穷大。设置集合S用来表示已经找到的最短路径。此时,S={D}。现在得到D到各点距离{D(0),C(3),E(4),F(),G(),B(),A()},其中代表未知数也可以说是无穷大,括号里面的数值代表D点到该点的最短距离。

第2步:不考虑集合S中的值,因为dis[C]=3,是当中距离最短的,所以此时更新S,S={D,C}。接着我们看与C连接的点,分别有B,E,F,已经在集合S中的不看,dis[C-B]=10,因而dis[B]=dis[C]+10=13,dis[F]=dis[C]+dis[C-F]=9,dis[E]=dis[C]+dis[C-E]=3+5=8>4(初始化时的dis[E]=4)不更新。此时{D(0),C(3),E(4),F(9),G(),B(13),A()}。

第3步:在第2步中,E点的值4最小,更新S={D,C,E},此时看与E点直接连接的点,分别有F,G。dis[F]=dis[E]+dis[E-F]=4+2=6(比原来的值小,得到更新),dis[G]=dis[E]+dis[E-G]=4+8=12(更新)。此时{D(0),C(3),E(4),F(6),G(12),B(13),A()}。

第4步:在第3步中,F点的值6最小,更新S={D,C,E,F},此时看与F点直接连接的点,分别有B,A,G。dis[B]=dis[F]+dis[F-B]=6+7=13,dis[A]=dis[F]+dis[F-A]=6+16=22,dis[G]=dis[F]+dis[F-G]=6+9=15>12(不更新)。此时{D(0),C(3),E(4),F(6),G(12),B(13),A(22)}.

第5步:在第4步中,G点的值12最小,更新S={D,C,E,F,G},此时看与G点直接连接的点,只有A。dis[A]=dis[G]+dis[G-A]=12+14=26>22(不更新)。{D(0),C(3),E(4),F(6),G(12),B(13),A(22)}.

第6步:在第5步中,B点的值13最小,更新S={D,C,E,F,G,B},此时看与B点直接连接的点,只有A。dis[A]=dis[B]+dis[B-A]=13+12=25>22(不更新)。{D(0),C(3),E(4),F(6),G(12),B(13),A(22)}.

第7步:最后只剩下A值,直接进入集合S={D,C,E,F,G,B,A},此时所有的点都已经遍历结束,得到最终结果{D(0),C(3),E(4),F(6),G(12),B(13),A(22)}.


相关文章
|
1月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
70 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
1月前
|
存储 算法 程序员
迪杰斯特拉(Dijkstra)算法(C/C++)
迪杰斯特拉(Dijkstra)算法(C/C++)
|
3月前
|
自然语言处理 算法
HanLP — HMM隐马尔可夫模型 - 路径规划算法 - 求解最短路径 - 维特比(Viterbi)算法
HanLP — HMM隐马尔可夫模型 - 路径规划算法 - 求解最短路径 - 维特比(Viterbi)算法
59 0
HanLP — HMM隐马尔可夫模型 - 路径规划算法 - 求解最短路径 - 维特比(Viterbi)算法
|
4月前
|
算法 Java
Java语言实现最短路径算法(Shortest Path)
Java语言实现最短路径算法(Shortest Path)
60 3
|
3月前
|
算法 定位技术
路径规划算法 - 求解最短路径 - A*(A-Star)算法
路径规划算法 - 求解最短路径 - A*(A-Star)算法
86 0
|
3月前
|
算法
路径规划算法 - 求解最短路径 - Dijkstra(迪杰斯特拉)算法
路径规划算法 - 求解最短路径 - Dijkstra(迪杰斯特拉)算法
67 0
|
30天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
7天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
15天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
16天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
下一篇
无影云桌面