ML之NB:基于news新闻文本数据集利用纯统计法、kNN、朴素贝叶斯(高斯/多元伯努利/多项式)、线性判别分析LDA、感知器等算法实现文本分类预测

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: ML之NB:基于news新闻文本数据集利用纯统计法、kNN、朴素贝叶斯(高斯/多元伯努利/多项式)、线性判别分析LDA、感知器等算法实现文本分类预测

核心代码

class GaussianNB Found at: sklearn.naive_bayes

class GaussianNB(_BaseNB):

   """

   Gaussian Naive Bayes (GaussianNB)

 

   Can perform online updates to model parameters via :meth:`partial_fit`.

   For details on algorithm used to update feature means and variance online,

   see Stanford CS tech report STAN-CS-79-773 by Chan, Golub, and LeVeque:

 

  http://i.stanford.edu/pub/cstr/reports/cs/tr/79/773/CS-TR-79-773.pdf

 

   Read more in the :ref:`User Guide <gaussian_naive_bayes>`.

 

   Parameters

   ----------

   priors : array-like of shape (n_classes,)

   Prior probabilities of the classes. If specified the priors are not

   adjusted according to the data.

 

   var_smoothing : float, default=1e-9

   Portion of the largest variance of all features that is added to

   variances for calculation stability.

 

   .. versionadded:: 0.20

 

   Attributes

   ----------

   class_count_ : ndarray of shape (n_classes,)

   number of training samples observed in each class.

 

   class_prior_ : ndarray of shape (n_classes,)

   probability of each class.

 

   classes_ : ndarray of shape (n_classes,)

   class labels known to the classifier

 

   epsilon_ : float

   absolute additive value to variances

 

   sigma_ : ndarray of shape (n_classes, n_features)

   variance of each feature per class

 

   theta_ : ndarray of shape (n_classes, n_features)

   mean of each feature per class

 

   Examples

   --------

   >>> import numpy as np

   >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])

   >>> Y = np.array([1, 1, 1, 2, 2, 2])

   >>> from sklearn.naive_bayes import GaussianNB

   >>> clf = GaussianNB()

   >>> clf.fit(X, Y)

   GaussianNB()

   >>> print(clf.predict([[-0.8, -1]]))

   [1]

   >>> clf_pf = GaussianNB()

   >>> clf_pf.partial_fit(X, Y, np.unique(Y))

   GaussianNB()

   >>> print(clf_pf.predict([[-0.8, -1]]))

   [1]

   """

   @_deprecate_positional_args

   def __init__(self, *, priors=None, var_smoothing=1e-9):

       self.priors = priors

       self.var_smoothing = var_smoothing

 

   def fit(self, X, y, sample_weight=None):

       """Fit Gaussian Naive Bayes according to X, y

       Parameters

       ----------

       X : array-like of shape (n_samples, n_features)

           Training vectors, where n_samples is the number of samples

           and n_features is the number of features.

       y : array-like of shape (n_samples,)

           Target values.

       sample_weight : array-like of shape (n_samples,), default=None

           Weights applied to individual samples (1. for unweighted).

           .. versionadded:: 0.17

              Gaussian Naive Bayes supports fitting with *sample_weight*.

       Returns

       -------

       self : object

       """

       X, y = self._validate_data(X, y)

       y = column_or_1d(y, warn=True)

       return self._partial_fit(X, y, np.unique(y), _refit=True,

           sample_weight=sample_weight)

 

   def _check_X(self, X):

       return check_array(X)

 

   @staticmethod

   def _update_mean_variance(n_past, mu, var, X, sample_weight=None):

       """Compute online update of Gaussian mean and variance.

       Given starting sample count, mean, and variance, a new set of

       points X, and optionally sample weights, return the updated mean and

       variance. (NB - each dimension (column) in X is treated as independent

       -- you get variance, not covariance).

       Can take scalar mean and variance, or vector mean and variance to

       simultaneously update a number of independent Gaussians.

       See Stanford CS tech report STAN-CS-79-773 by Chan, Golub, and

        LeVeque:

      http://i.stanford.edu/pub/cstr/reports/cs/tr/79/773/CS-TR-79-773.pdf

       Parameters

       ----------

       n_past : int

           Number of samples represented in old mean and variance. If sample

           weights were given, this should contain the sum of sample

           weights represented in old mean and variance.

       mu : array-like of shape (number of Gaussians,)

           Means for Gaussians in original set.

       var : array-like of shape (number of Gaussians,)

           Variances for Gaussians in original set.

       sample_weight : array-like of shape (n_samples,), default=None

           Weights applied to individual samples (1. for unweighted).

       Returns

       -------

       total_mu : array-like of shape (number of Gaussians,)

           Updated mean for each Gaussian over the combined set.

       total_var : array-like of shape (number of Gaussians,)

           Updated variance for each Gaussian over the combined set.

       """

       if X.shape[0] == 0:

           return mu, var

       # Compute (potentially weighted) mean and variance of new datapoints

       if sample_weight is not None:

           n_new = float(sample_weight.sum())

           new_mu = np.average(X, axis=0, weights=sample_weight)

           new_var = np.average((X - new_mu) ** 2, axis=0,

            weights=sample_weight)

       else:

           n_new = X.shape[0]

           new_var = np.var(X, axis=0)

           new_mu = np.mean(X, axis=0)

       if n_past == 0:

           return new_mu, new_var

       n_total = float(n_past + n_new)

       # Combine mean of old and new data, taking into consideration

       # (weighted) number of observations

       total_mu = (n_new * new_mu + n_past * mu) / n_total

       # Combine variance of old and new data, taking into consideration

       # (weighted) number of observations. This is achieved by combining

       # the sum-of-squared-differences (ssd)

       old_ssd = n_past * var

       new_ssd = n_new * new_var

       total_ssd = old_ssd + new_ssd + (n_new * n_past / n_total) * (mu -

        new_mu) ** 2

       total_var = total_ssd / n_total

       return total_mu, total_var

 

   def partial_fit(self, X, y, classes=None, sample_weight=None):

       """Incremental fit on a batch of samples.

       This method is expected to be called several times consecutively

       on different chunks of a dataset so as to implement out-of-core

       or online learning.

       This is especially useful when the whole dataset is too big to fit in

       memory at once.

       This method has some performance and numerical stability overhead,

       hence it is better to call partial_fit on chunks of data that are

       as large as possible (as long as fitting in the memory budget) to

       hide the overhead.

       Parameters

       ----------

       X : array-like of shape (n_samples, n_features)

           Training vectors, where n_samples is the number of samples and

           n_features is the number of features.

       y : array-like of shape (n_samples,)

           Target values.

       classes : array-like of shape (n_classes,), default=None

           List of all the classes that can possibly appear in the y vector.

           Must be provided at the first call to partial_fit, can be omitted

           in subsequent calls.

       sample_weight : array-like of shape (n_samples,), default=None

           Weights applied to individual samples (1. for unweighted).

           .. versionadded:: 0.17

       Returns

       -------

       self : object

       """

       return self._partial_fit(X, y, classes, _refit=False,

           sample_weight=sample_weight)

 

   def _partial_fit(self, X, y, classes=None, _refit=False,

       sample_weight=None):

       """Actual implementation of Gaussian NB fitting.

       Parameters

       ----------

       X : array-like of shape (n_samples, n_features)

           Training vectors, where n_samples is the number of samples and

           n_features is the number of features.

       y : array-like of shape (n_samples,)

           Target values.

       classes : array-like of shape (n_classes,), default=None

           List of all the classes that can possibly appear in the y vector.

           Must be provided at the first call to partial_fit, can be omitted

           in subsequent calls.

       _refit : bool, default=False

           If true, act as though this were the first time we called

           _partial_fit (ie, throw away any past fitting and start over).

       sample_weight : array-like of shape (n_samples,), default=None

           Weights applied to individual samples (1. for unweighted).

       Returns

       -------

       self : object

       """

       X, y = check_X_y(X, y)

       if sample_weight is not None:

           sample_weight = _check_sample_weight(sample_weight, X)

       # If the ratio of data variance between dimensions is too small, it

       # will cause numerical errors. To address this, we artificially

       # boost the variance by epsilon, a small fraction of the standard

       # deviation of the largest dimension.

       self.epsilon_ = self.var_smoothing * np.var(X, axis=0).max()

       if _refit:

           self.classes_ = None

       if _check_partial_fit_first_call(self, classes):

           # This is the first call to partial_fit:

           # initialize various cumulative counters

           n_features = X.shape[1]

           n_classes = len(self.classes_)

           self.theta_ = np.zeros((n_classes, n_features))

           self.sigma_ = np.zeros((n_classes, n_features))

           self.class_count_ = np.zeros(n_classes, dtype=np.float64)

           # Initialise the class prior

           # Take into account the priors

           if self.priors is not None:

               priors = np.asarray(self.priors)

               # Check that the provide prior match the number of classes

               if len(priors) != n_classes:

                   raise ValueError('Number of priors must match number of'

                       ' classes.')

               # Check that the sum is 1

               if not np.isclose(priors.sum(), 1.0):

                   raise ValueError('The sum of the priors should be 1.') # Check that

                    the prior are non-negative

               if (priors < 0).any():

                   raise ValueError('Priors must be non-negative.')

               self.class_prior_ = priors

           else:

               self.class_prior_ = np.zeros(len(self.classes_),

                   dtype=np.float64) # Initialize the priors to zeros for each class

       else:

           if X.shape[1] != self.theta_.shape[1]:

               msg = "Number of features %d does not match previous data %d."

               raise ValueError(msg % (X.shape[1], self.theta_.shape[1]))

           # Put epsilon back in each time

           ::]self.epsilon_

       self.sigma_[ -=

       classes = self.classes_

       unique_y = np.unique(y)

       unique_y_in_classes = np.in1d(unique_y, classes)

       if not np.all(unique_y_in_classes):

           raise ValueError("The target label(s) %s in y do not exist in the "

               "initial classes %s" %

               (unique_y[~unique_y_in_classes], classes))

       for y_i in unique_y:

           i = classes.searchsorted(y_i)

           X_i = X[y == y_i:]

           if sample_weight is not None:

               sw_i = sample_weight[y == y_i]

               N_i = sw_i.sum()

           else:

               sw_i = None

               N_i = X_i.shape[0]

           new_theta, new_sigma = self._update_mean_variance(

               self.class_count_[i], self.theta_[i:], self.sigma_[i:],

               X_i, sw_i)

           self.theta_[i:] = new_theta

           self.sigma_[i:] = new_sigma

           self.class_count_[i] += N_i

     

       self.sigma_[::] += self.epsilon_

       # Update if only no priors is provided

       if self.priors is None:

           # Empirical prior, with sample_weight taken into account

           self.class_prior_ = self.class_count_ / self.class_count_.sum()

       return self

 

   def _joint_log_likelihood(self, X):

       joint_log_likelihood = []

       for i in range(np.size(self.classes_)):

           jointi = np.log(self.class_prior_[i])

           n_ij = -0.5 * np.sum(np.log(2. * np.pi * self.sigma_[i:]))

           n_ij -= 0.5 * np.sum(((X - self.theta_[i:]) ** 2) /

               (self.sigma_[i:]), 1)

           joint_log_likelihood.append(jointi + n_ij)

     

       joint_log_likelihood = np.array(joint_log_likelihood).T

       return joint_log_likelihood

class MultinomialNB Found at: sklearn.naive_bayes

class MultinomialNB(_BaseDiscreteNB):

   """

   Naive Bayes classifier for multinomial models

 

   The multinomial Naive Bayes classifier is suitable for classification with

   discrete features (e.g., word counts for text classification). The

   multinomial distribution normally requires integer feature counts. However,

   in practice, fractional counts such as tf-idf may also work.

 

   Read more in the :ref:`User Guide <multinomial_naive_bayes>`.

 

   Parameters

   ----------

   alpha : float, default=1.0

   Additive (Laplace/Lidstone) smoothing parameter

   (0 for no smoothing).

 

   fit_prior : bool, default=True

   Whether to learn class prior probabilities or not.

   If false, a uniform prior will be used.

 

   class_prior : array-like of shape (n_classes,), default=None

   Prior probabilities of the classes. If specified the priors are not

   adjusted according to the data.

 

   Attributes

   ----------

   class_count_ : ndarray of shape (n_classes,)

   Number of samples encountered for each class during fitting. This

   value is weighted by the sample weight when provided.

 

   class_log_prior_ : ndarray of shape (n_classes, )

   Smoothed empirical log probability for each class.

 

   classes_ : ndarray of shape (n_classes,)

   Class labels known to the classifier

 

   coef_ : ndarray of shape (n_classes, n_features)

   Mirrors ``feature_log_prob_`` for interpreting MultinomialNB

   as a linear model.

 

   feature_count_ : ndarray of shape (n_classes, n_features)

   Number of samples encountered for each (class, feature)

   during fitting. This value is weighted by the sample weight when

   provided.

 

   feature_log_prob_ : ndarray of shape (n_classes, n_features)

   Empirical log probability of features

   given a class, ``P(x_i|y)``.

 

   intercept_ : ndarray of shape (n_classes, )

   Mirrors ``class_log_prior_`` for interpreting MultinomialNB

   as a linear model.

 

   n_features_ : int

   Number of features of each sample.

 

   Examples

   --------

   >>> import numpy as np

   >>> rng = np.random.RandomState(1)

   >>> X = rng.randint(5, size=(6, 100))

   >>> y = np.array([1, 2, 3, 4, 5, 6])

   >>> from sklearn.naive_bayes import MultinomialNB

   >>> clf = MultinomialNB()

   >>> clf.fit(X, y)

   MultinomialNB()

   >>> print(clf.predict(X[2:3]))

   [3]

 

   Notes

   -----

   For the rationale behind the names `coef_` and `intercept_`, i.e.

   naive Bayes as a linear classifier, see J. Rennie et al. (2003),

   Tackling the poor assumptions of naive Bayes text classifiers, ICML.

 

   References

   ----------

   C.D. Manning, P. Raghavan and H. Schuetze (2008). Introduction to

   Information Retrieval. Cambridge University Press, pp. 234-265.

  https://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-

    classification-1.html

   """

   @_deprecate_positional_args

   def __init__(self, *, alpha=1.0, fit_prior=True, class_prior=None):

       self.alpha = alpha

       self.fit_prior = fit_prior

       self.class_prior = class_prior

 

   def _more_tags(self):

       return {'requires_positive_X':True}

 

   def _count(self, X, Y):

       """Count and smooth feature occurrences."""

       check_non_negative(X, "MultinomialNB (input X)")

       self.feature_count_ += safe_sparse_dot(Y.T, X)

       self.class_count_ += Y.sum(axis=0)

 

   def _update_feature_log_prob(self, alpha):

       """Apply smoothing to raw counts and recompute log probabilities"""

       smoothed_fc = self.feature_count_ + alpha

       smoothed_cc = smoothed_fc.sum(axis=1)

       self.feature_log_prob_ = np.log(smoothed_fc) - np.log(smoothed_cc.

        reshape(-1, 1))

 

   def _joint_log_likelihood(self, X):

       """Calculate the posterior log probability of the samples X"""

       return safe_sparse_dot(X, self.feature_log_prob_.T) + self.class_log_prior_

class BernoulliNB Found at: sklearn.naive_bayes

class BernoulliNB(_BaseDiscreteNB):

   """Naive Bayes classifier for multivariate Bernoulli models.

 

   Like MultinomialNB, this classifier is suitable for discrete data. The

   difference is that while MultinomialNB works with occurrence counts,

   BernoulliNB is designed for binary/boolean features.

 

   Read more in the :ref:`User Guide <bernoulli_naive_bayes>`.

 

   Parameters

   ----------

   alpha : float, default=1.0

   Additive (Laplace/Lidstone) smoothing parameter

   (0 for no smoothing).

 

   binarize : float or None, default=0.0

   Threshold for binarizing (mapping to booleans) of sample features.

   If None, input is presumed to already consist of binary vectors.

 

   fit_prior : bool, default=True

   Whether to learn class prior probabilities or not.

   If false, a uniform prior will be used.

 

   class_prior : array-like of shape (n_classes,), default=None

   Prior probabilities of the classes. If specified the priors are not

   adjusted according to the data.

 

   Attributes

   ----------

   class_count_ : ndarray of shape (n_classes)

   Number of samples encountered for each class during fitting. This

   value is weighted by the sample weight when provided.

 

   class_log_prior_ : ndarray of shape (n_classes)

   Log probability of each class (smoothed).

 

   classes_ : ndarray of shape (n_classes,)

   Class labels known to the classifier

 

   feature_count_ : ndarray of shape (n_classes, n_features)

   Number of samples encountered for each (class, feature)

   during fitting. This value is weighted by the sample weight when

   provided.

 

   feature_log_prob_ : ndarray of shape (n_classes, n_features)

   Empirical log probability of features given a class, P(x_i|y).

 

   n_features_ : int

   Number of features of each sample.

 

   Examples

   --------

   >>> import numpy as np

   >>> rng = np.random.RandomState(1)

   >>> X = rng.randint(5, size=(6, 100))

   >>> Y = np.array([1, 2, 3, 4, 4, 5])

   >>> from sklearn.naive_bayes import BernoulliNB

   >>> clf = BernoulliNB()

   >>> clf.fit(X, Y)

   BernoulliNB()

   >>> print(clf.predict(X[2:3]))

   [3]

 

   References

   ----------

   C.D. Manning, P. Raghavan and H. Schuetze (2008). Introduction to

   Information Retrieval. Cambridge University Press, pp. 234-265.

  https://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-

    model-1.html

 

   A. McCallum and K. Nigam (1998). A comparison of event models

    for naive

   Bayes text classification. Proc. AAAI/ICML-98 Workshop on Learning

    for

   Text Categorization, pp. 41-48.

 

   V. Metsis, I. Androutsopoulos and G. Paliouras (2006). Spam filtering

    with

   naive Bayes -- Which naive Bayes? 3rd Conf. on Email and Anti-Spam

    (CEAS).

   """

   @_deprecate_positional_args

   def __init__(self, *, alpha=1.0, binarize=.0, fit_prior=True,

       class_prior=None):

       self.alpha = alpha

       self.binarize = binarize

       self.fit_prior = fit_prior

       self.class_prior = class_prior

 

   def _check_X(self, X):

       X = super()._check_X(X)

       if self.binarize is not None:

           X = binarize(X, threshold=self.binarize)

       return X

 

   def _check_X_y(self, X, y):

       X, y = super()._check_X_y(X, y)

       if self.binarize is not None:

           X = binarize(X, threshold=self.binarize)

       return X, y

 

   def _count(self, X, Y):

       """Count and smooth feature occurrences."""

       self.feature_count_ += safe_sparse_dot(Y.T, X)

       self.class_count_ += Y.sum(axis=0)

 

   def _update_feature_log_prob(self, alpha):

       """Apply smoothing to raw counts and recompute log

        probabilities"""

       smoothed_fc = self.feature_count_ + alpha

       smoothed_cc = self.class_count_ + alpha * 2

       self.feature_log_prob_ = np.log(smoothed_fc) - np.log

        (smoothed_cc.reshape(-1, 1))

 

   def _joint_log_likelihood(self, X):

       """Calculate the posterior log probability of the samples X"""

       n_classes, n_features = self.feature_log_prob_.shape

       n_samples, n_features_X = X.shape

       if n_features_X != n_features:

           raise ValueError(

               "Expected input with %d features, got %d instead" %

                (n_features, n_features_X))

       neg_prob = np.log(1 - np.exp(self.feature_log_prob_))

       # Compute  neg_prob · (1 - X).T  as  ∑neg_prob - X · neg_prob

       jll = safe_sparse_dot(X, (self.feature_log_prob_ - neg_prob).T)

       jll += self.class_log_prior_ + neg_prob.sum(axis=1)

       return jll


相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
目录
打赏
0
0
0
0
1043
分享
相关文章
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
266 6
利用SVM(支持向量机)分类算法对鸢尾花数据集进行分类
本文介绍了如何使用支持向量机(SVM)算法对鸢尾花数据集进行分类。作者通过Python的sklearn库加载数据,并利用pandas、matplotlib等工具进行数据分析和可视化。
240 70
|
12天前
|
基于 PHP 语言的滑动窗口频率统计算法在公司局域网监控电脑日志分析中的应用研究
在当代企业网络架构中,公司局域网监控电脑系统需实时处理海量终端设备产生的连接日志。每台设备平均每分钟生成 3 至 5 条网络请求记录,这对监控系统的数据处理能力提出了极高要求。传统关系型数据库在应对这种高频写入场景时,性能往往难以令人满意。故而,引入特定的内存数据结构与优化算法成为必然选择。
21 3
JS数组操作方法全景图,全网最全构建完整知识网络!js数组操作方法全集(实现筛选转换、随机排序洗牌算法、复杂数据处理统计等情景详解,附大量源码和易错点解析)
这些方法提供了对数组的全面操作,包括搜索、遍历、转换和聚合等。通过分为原地操作方法、非原地操作方法和其他方法便于您理解和记忆,并熟悉他们各自的使用方法与使用范围。详细的案例与进阶使用,方便您理解数组操作的底层原理。链式调用的几个案例,让您玩转数组操作。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
基于图论算法有向图PageRank与无向图Louvain算法构建指令的方式方法 用于支撑qwen agent中的统计相关组件
利用图序列进行数据解读,主要包括节点序列分析、边序列分析以及结合节点和边序列的综合分析。节点序列分析涉及节点度分析(如入度、出度、度中心性)、节点属性分析(如品牌、价格等属性的分布与聚类)、节点标签分析(如不同标签的分布及标签间的关联)。边序列分析则关注边的权重分析(如关联强度)、边的类型分析(如管理、协作等关系)及路径分析(如最短路径计算)。结合节点和边序列的分析,如子图挖掘和图的动态分析,可以帮助深入理解图的结构和功能。例如,通过子图挖掘可以发现具有特定结构的子图,而图的动态分析则能揭示图随时间的变化趋势。这些分析方法结合使用,能够从多个角度全面解读图谱数据,为决策提供有力支持。
199 0
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
223 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
【python】python客户信息审计风险决策树算法分类预测(源码+数据集+论文)【独一无二】
【python】python客户信息审计风险决策树算法分类预测(源码+数据集+论文)【独一无二】
141 1
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
本程序基于免疫算法实现物流仓储点选址优化,并通过MATLAB 2022A仿真展示结果。核心代码包括收敛曲线绘制、最优派送路线规划及可视化。算法模拟生物免疫系统,通过多样性生成、亲和力评价、选择、克隆、变异和抑制机制,高效搜索最优解。解决了物流仓储点选址这一复杂多目标优化问题,显著提升物流效率与服务质量。附完整无水印运行结果图示。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
基于GA遗传算法的斜拉桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现斜拉桥静载试验车辆最优布载的MATLAB仿真,旨在自动化确定车辆位置以满足加载效率ηq(0.95≤ηq≤1.05)的要求,目标是使ηq尽量接近1,同时减少加载车辆数量和布载耗时。程序通过迭代优化计算车辆位置、方向、类型及占用车道等参数,并展示适应度值收敛过程。测试版本为MATLAB2022A,包含核心代码与运行结果展示。优化模型综合考虑车辆总重量、间距及桥梁允许载荷密度等约束条件,确保布载方案科学合理。
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等