Python之pandas:pandas.set_option函数的参数详细解释

简介: Python之pandas:pandas.set_option函数的参数详细解释

pandas.set_option函数的参数解释


pandas.set_option(pat, value) = <pandas._config.config.CallableDynamicDoc object>


Available options:

compute.[use_bottleneck, use_numba, use_numexpr]

display.[chop_threshold, colheader_justify, column_space, date_dayfirst, date_yearfirst, encoding, expand_frame_repr, float_format]

display.html.[border, table_schema, use_mathjax]

display.[large_repr]

display.latex.[escape, longtable, multicolumn, multicolumn_format, multirow, repr]

display.[max_categories, max_columns, max_colwidth, max_info_columns, max_info_rows, max_rows, max_seq_items, memory_usage, min_rows, multi_sparse, notebook_repr_html, pprint_nest_depth, precision, show_dimensions]

display.unicode.[ambiguous_as_wide, east_asian_width]

display.[width]

io.excel.ods.[reader, writer]

io.excel.xls.[reader, writer]

io.excel.xlsb.[reader]

io.excel.xlsm.[reader, writer]

io.excel.xlsx.[reader, writer]

io.hdf.[default_format, dropna_table]

io.parquet.[engine]

mode.[chained_assignment, sim_interactive, use_inf_as_na, use_inf_as_null]

plotting.[backend]

plotting.matplotlib.[register_converters]

Parameters:pat:str

Regexp which should match a single option. Note: partial matches are supported for convenience, but unless you use the full option name (e.g. x.y.z.option_name), your code may break in future versions if new options with similar names are introduced.

value:object,New value of option.

Returns: None

Raises: OptionError if no such option exists

Notes

The available options with its descriptions:

compute.use_bottleneckbool

Use the bottleneck library to accelerate if it is installed, the default is True Valid values: False,True [default: True] [currently: True]

compute.use_numbabool

Use the numba engine option for select operations if it is installed, the default is False Valid values: False,True [default: False] [currently: False]

compute.use_numexprbool

Use the numexpr library to accelerate computation if it is installed, the default is True Valid values: False,True [default: True] [currently: True]

display.chop_thresholdfloat or None

if set to a float value, all float values smaller then the given threshold will be displayed as exactly 0 by repr and friends. [default: None] [currently: None]

display.colheader_justify‘left’/’right’

Controls the justification of column headers. used by DataFrameFormatter. [default: right] [currently: right]

display.column_space No description available.

[default: 12] [currently: 12]

display.date_dayfirstboolean

When True, prints and parses dates with the day first, eg 20/01/2005 [default: False] [currently: False]

display.date_yearfirstboolean

When True, prints and parses dates with the year first, eg 2005/01/20 [default: False] [currently: False]

display.encodingstr/unicode

Defaults to the detected encoding of the console. Specifies the encoding to be used for strings returned by to_string, these are generally strings meant to be displayed on the console. [default: utf-8] [currently: utf-8]

display.expand_frame_reprboolean

Whether to print out the full DataFrame repr for wide DataFrames across multiple lines, max_columns is still respected, but the output will wrap-around across multiple “pages” if its width exceeds display.width. [default: True] [currently: True]

display.float_formatcallable

The callable should accept a floating point number and return a string with the desired format of the number. This is used in some places like SeriesFormatter. See formats.format.EngFormatter for an example. [default: None] [currently: None]

display.html.borderint

A border=value attribute is inserted in the <table> tag for the DataFrame HTML repr. [default: 1] [currently: 1]

display.html.table_schemaboolean

Whether to publish a Table Schema representation for frontends that support it. (default: False) [default: False] [currently: False]

display.html.use_mathjaxboolean

When True, Jupyter notebook will process table contents using MathJax, rendering mathematical expressions enclosed by the dollar symbol. (default: True) [default: True] [currently: True]

display.large_repr‘truncate’/’info’

For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can show a truncated table (the default from 0.13), or switch to the view from df.info() (the behaviour in earlier versions of pandas). [default: truncate] [currently: truncate]

display.latex.escapebool

This specifies if the to_latex method of a Dataframe uses escapes special characters. Valid values: False,True [default: True] [currently: True]

display.latex.longtable :bool

This specifies if the to_latex method of a Dataframe uses the longtable format. Valid values: False,True [default: False] [currently: False]

display.latex.multicolumnbool

This specifies if the to_latex method of a Dataframe uses multicolumns to pretty-print MultiIndex columns. Valid values: False,True [default: True] [currently: True]

display.latex.multicolumn_formatbool

This specifies if the to_latex method of a Dataframe uses multicolumns to pretty-print MultiIndex columns. Valid values: False,True [default: l] [currently: l]

display.latex.multirowbool

This specifies if the to_latex method of a Dataframe uses multirows to pretty-print MultiIndex rows. Valid values: False,True [default: False] [currently: False]

display.latex.reprboolean

Whether to produce a latex DataFrame representation for jupyter environments that support it. (default: False) [default: False] [currently: False]

display.max_categoriesint

This sets the maximum number of categories pandas should output when printing out a Categorical or a Series of dtype “category”. [default: 8] [currently: 8]

display.max_columnsint

If max_cols is exceeded, switch to truncate view. Depending on large_repr, objects are either centrally truncated or printed as a summary view. ‘None’ value means unlimited.

In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and pandas will auto-detect the width of the terminal and print a truncated object which fits the screen width. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. [default: 0] [currently: 0]

display.max_colwidthint or None

The maximum width in characters of a column in the repr of a pandas data structure. When the column overflows, a “…” placeholder is embedded in the output. A ‘None’ value means unlimited. [default: 50] [currently: 50]

display.max_info_columnsint

max_info_columns is used in DataFrame.info method to decide if per column information will be printed. [default: 100] [currently: 100]

display.max_info_rowsint or None

df.info() will usually show null-counts for each column. For large frames this can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller dimensions than specified. [default: 1690785] [currently: 1690785]

display.max_rowsint

If max_rows is exceeded, switch to truncate view. Depending on large_repr, objects are either centrally truncated or printed as a summary view. ‘None’ value means unlimited.

In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and pandas will auto-detect the height of the terminal and print a truncated object which fits the screen height. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. [default: 60] [currently: 15]

display.max_seq_itemsint or None

when pretty-printing a long sequence, no more then max_seq_items will be printed. If items are omitted, they will be denoted by the addition of “…” to the resulting string.

If set to None, the number of items to be printed is unlimited. [default: 100] [currently: 100]

display.memory_usagebool, string or None

This specifies if the memory usage of a DataFrame should be displayed when df.info() is called. Valid values True,False,’deep’ [default: True] [currently: True]

display.min_rowsint

The numbers of rows to show in a truncated view (when max_rows is exceeded). Ignored when max_rows is set to None or 0. When set to None, follows the value of max_rows. [default: 10] [currently: 10]

display.multi_sparseboolean

“sparsify” MultiIndex display (don’t display repeated elements in outer levels within groups) [default: True] [currently: True]

display.notebook_repr_htmlboolean

When True, IPython notebook will use html representation for pandas objects (if it is available). [default: True] [currently: True]

display.pprint_nest_depthint

Controls the number of nested levels to process when pretty-printing [default: 3] [currently: 3]

display.precisionint

Floating point output precision (number of significant digits). This is only a suggestion [default: 6] [currently: 6]

display.show_dimensionsboolean or ‘truncate’

Whether to print out dimensions at the end of DataFrame repr. If ‘truncate’ is specified, only print out the dimensions if the frame is truncated (e.g. not display all rows and/or columns) [default: truncate] [currently: truncate]

display.unicode.ambiguous_as_wideboolean

Whether to use the Unicode East Asian Width to calculate the display text width. Enabling this may affect to the performance (default: False) [default: False] [currently: False]

display.unicode.east_asian_widthboolean

Whether to use the Unicode East Asian Width to calculate the display text width. Enabling this may affect to the performance (default: False) [default: False] [currently: False]

display.widthint

Width of the display in characters. In case python/IPython is running in a terminal this can be set to None and pandas will correctly auto-detect the width. Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to correctly detect the width. [default: 80] [currently: 80]

io.excel.ods.readerstring

The default Excel reader engine for ‘ods’ files. Available options: auto, odf. [default: auto] [currently: auto]

io.excel.ods.writerstring

The default Excel writer engine for ‘ods’ files. Available options: auto, odf. [default: auto] [currently: auto]

io.excel.xls.readerstring

The default Excel reader engine for ‘xls’ files. Available options: auto, xlrd. [default: auto] [currently: auto]

io.excel.xls.writerstring

The default Excel writer engine for ‘xls’ files. Available options: auto, xlwt. [default: auto] [currently: auto]

io.excel.xlsb.readerstring

The default Excel reader engine for ‘xlsb’ files. Available options: auto, pyxlsb. [default: auto] [currently: auto]

io.excel.xlsm.readerstring

The default Excel reader engine for ‘xlsm’ files. Available options: auto, xlrd, openpyxl. [default: auto] [currently: auto]

io.excel.xlsm.writerstring

The default Excel writer engine for ‘xlsm’ files. Available options: auto, openpyxl. [default: auto] [currently: auto]

io.excel.xlsx.readerstring

The default Excel reader engine for ‘xlsx’ files. Available options: auto, xlrd, openpyxl. [default: auto] [currently: auto]

io.excel.xlsx.writerstring

The default Excel writer engine for ‘xlsx’ files. Available options: auto, openpyxl, xlsxwriter. [default: auto] [currently: auto]

io.hdf.default_formatformat

default format writing format, if None, then put will default to ‘fixed’ and append will default to ‘table’ [default: None] [currently: None]

io.hdf.dropna_tableboolean

drop ALL nan rows when appending to a table [default: False] [currently: False]

io.parquet.enginestring

The default parquet reader/writer engine. Available options: ‘auto’, ‘pyarrow’, ‘fastparquet’, the default is ‘auto’ [default: auto] [currently: auto]

mode.chained_assignmentstring

Raise an exception, warn, or no action if trying to use chained assignment, The default is warn [default: warn] [currently: warn]

mode.sim_interactiveboolean

Whether to simulate interactive mode for purposes of testing [default: False] [currently: False]

mode.use_inf_as_naboolean

True means treat None, NaN, INF, -INF as NA (old way), False means None and NaN are null, but INF, -INF are not NA (new way). [default: False] [currently: False]

mode.use_inf_as_nullboolean

use_inf_as_null had been deprecated and will be removed in a future version. Use use_inf_as_na instead. [default: False] [currently: False] (Deprecated, use mode.use_inf_as_na instead.)

plotting.backendstr

The plotting backend to use. The default value is “matplotlib”, the backend provided with pandas. Other backends can be specified by providing the name of the module that implements the backend. [default: matplotlib] [currently: matplotlib]

plotting.matplotlib.register_convertersbool or ‘auto’.

Whether to register converters with matplotlib’s units registry for dates, times, datetimes, and Periods. Toggling to False will remove the converters, restoring any converters that pandas overwrote. [default: auto] [currently: auto]

 


相关文章
|
1月前
|
算法 Java Docker
(Python基础)新时代语言!一起学习Python吧!(三):IF条件判断和match匹配;Python中的循环:for...in、while循环;循环操作关键字;Python函数使用方法
IF 条件判断 使用if语句,对条件进行判断 true则执行代码块缩进语句 false则不执行代码块缩进语句,如果有else 或 elif 则进入相应的规则中执行
205 1
|
1月前
|
存储 JavaScript Java
(Python基础)新时代语言!一起学习Python吧!(四):dict字典和set类型;切片类型、列表生成式;map和reduce迭代器;filter过滤函数、sorted排序函数;lambda函数
dict字典 Python内置了字典:dict的支持,dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度。 我们可以通过声明JS对象一样的方式声明dict
136 1
|
1月前
|
Java 数据处理 索引
(Pandas)Python做数据处理必选框架之一!(二):附带案例分析;刨析DataFrame结构和其属性;学会访问具体元素;判断元素是否存在;元素求和、求标准值、方差、去重、删除、排序...
DataFrame结构 每一列都属于Series类型,不同列之间数据类型可以不一样,但同一列的值类型必须一致。 DataFrame拥有一个总的 idx记录列,该列记录了每一行的索引 在DataFrame中,若列之间的元素个数不匹配,且使用Series填充时,在DataFrame里空值会显示为NaN;当列之间元素个数不匹配,并且不使用Series填充,会报错。在指定了index 属性显示情况下,会按照index的位置进行排序,默认是 [0,1,2,3,...] 从0索引开始正序排序行。
196 0
|
1月前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
311 0
|
1月前
|
Java 数据处理 索引
(numpy)Python做数据处理必备框架!(二):ndarray切片的使用与运算;常见的ndarray函数:平方根、正余弦、自然对数、指数、幂等运算;统计函数:方差、均值、极差;比较函数...
ndarray切片 索引从0开始 索引/切片类型 描述/用法 基本索引 通过整数索引直接访问元素。 行/列切片 使用冒号:切片语法选择行或列的子集 连续切片 从起始索引到结束索引按步长切片 使用slice函数 通过slice(start,stop,strp)定义切片规则 布尔索引 通过布尔条件筛选满足条件的元素。支持逻辑运算符 &、|。
122 0
|
2月前
|
设计模式 缓存 监控
Python装饰器:优雅增强函数功能
Python装饰器:优雅增强函数功能
255 101
|
2月前
|
缓存 测试技术 Python
Python装饰器:优雅地增强函数功能
Python装饰器:优雅地增强函数功能
196 99
|
2月前
|
存储 缓存 测试技术
Python装饰器:优雅地增强函数功能
Python装饰器:优雅地增强函数功能
177 98
|
2月前
|
JSON 缓存 开发者
淘宝商品详情接口(item_get)企业级全解析:参数配置、签名机制与 Python 代码实战
本文详解淘宝开放平台taobao.item_get接口对接全流程,涵盖参数配置、MD5签名生成、Python企业级代码实现及高频问题排查,提供可落地的实战方案,助你高效稳定获取商品数据。
|
4月前
|
存储 缓存 JavaScript
Set和Map有什么区别?
Set和Map有什么区别?
363 1

推荐镜像

更多