BigData之Hive:Hive数据管理的简介、下载、案例应用之详细攻略

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
数据管理 DMS,安全协同 3个实例 3个月
推荐场景:
学生管理系统数据库
简介: BigData之Hive:Hive数据管理的简介、下载、案例应用之详细攻略

Hive数据管理的简介


        Hive是基于Hadoop的一个数据仓库工具,用来进行数据提取、转化、加载,这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的机制。hive数据仓库工具能将结构化的数据文件映射为一张数据库表,并提供SQL查询功能,能将SQL语句转变成MapReduce任务来执行。Hive的优点是学习成本低,可以通过类似SQL语句实现快速MapReduce统计,使MapReduce变得更加简单,而不必开发专门的MapReduce应用程序。hive是十分适合数据仓库的统计分析和Windows注册表文件。

        Hive提供完整的SQL查询功能。可以将SQL语句转换为MapReduce任务运行,通过自己的SQL查询分析需要的内容,这套SQL简称Hive SQL,使不熟悉mapreduce的用户可以很方便地利用SQL语言‘查询、汇总和分析数据。而mapreduce开发人员可以把自己写的mapper和reducer作为插件来支持hive做更复杂的数据分析。它与关系型数据库的SQL略有不同,但支持了绝大多数的语句如DDL、DML以及常见的聚合函数、连接查询、条件查询。它还提供了一系列工具进行数据提取转化加载,用来存储、查询和分析存储在Hadoop中的大规模数据集,并支持UDF(User-Defined Function)、UDAF(User-Defnes AggregateFunction)和USTF(User-Defined Table-Generating Function),也可以实现对map和reduce函数的定制,为数据操作提供了良好的伸缩性和可扩展性。

        Hive可以把Hadoop下结构化数据文件映射为一张成Hive中的表,并提供类sql查询功能,除了不支持更新、索引和事务,sql其它功能都支持。可以将sql语句转换为MapReduce任务进行运行,作为sql到MapReduce的映射器。提供shell、JDBC/ODBC、Thrift、Web等接口。优点是成本低,可以通过类sql语句快速实现简单的MapReduce统计。


官网:https://hive.apache.org/



1、Hive的适用场景——不适合那些需要高实性的应用(不能够在大规模数据集上实现低延迟快速的查询)、不适合用联机(online)事务处理、不提供实时查询


        Hive构建在基于静态批处理的Hadoop 之上,Hadoop 通常都有较高的延迟并且在作业提交和调度的时候需要大量的开销。因此,hive 并不能够在大规模数据集上实现低延迟快速的查询,例如,hive 在几百MB 的数据集上执行查询一般有分钟级的时间延迟。 因此,hive 并不适合那些需要高实性的应用,例如,联机事务处理(OLTP)。hive 查询操作过程严格遵守Hadoop MapReduce 的作业执行模型,hive 将用户的hiveQL 语句通过解释器转换为MapReduce 作业提交到Hadoop 集群上,Hadoop 监控作业执行过程,然后返回作业执行结果给用户。hive 并非为联机事务处理而设计,Hive并不提供实时的查询和基于行级的数据更新操作。hive 的最佳使用场合是大数据集的批处理作业,例如,网络日志分析。


        Hive不适合用于联机(online)事务处理,也不提供实时查询功能。它最适合应用在基于大量不可变数据的批处理作业。hive的特点包括:可伸缩(在Hadoop的集群上动态添加设备)、可扩展、容错、输入格式的松散耦合。




2、Hive 的设计特点


        Hive是一种底层封装了Hadoop 的数据仓库处理工具,使用类SQL 的hiveSQL 语言实现数据查询,所有Hive 的数据都存储在Hadoop 兼容的文件系统(例如,Amazon S3、HDFS)中。Hive 在加载数据过程中不会对数据进行任何的修改,只是将数据移动到HDFS 中hive 设定的目录下,因此,Hive 不支持对数据的改写和添加,所有的数据都是在加载的时候确定的。hive 的设计特点如下。


支持创建索引,优化数据查询。

不同的存储类型,例如,纯文本文件、HBase 中的文件。

将元数据保存在关系数据库中,大大减少了在查询过程中执行语义检查的时间。

可以直接使用存储在Hadoop 文件系统中的数据。

内置大量用户函数UDF 来操作时间、字符串和其他的数据挖掘工具,支持用户扩展UDF 函数来完成内置函数无法实现的操作。

类SQL 的查询方式,将SQL 查询转换为MapReduce 的job 在Hadoop集群上执行。



3、Hive数据存储模型的四类数据模型—Table、External Table、Partition、Bucket


        Hive中包含以下四类数据模型:表(Table)、外部表(External Table)、分区(Partition)、桶(Bucket)。


(1)、Table:hive中的Table和数据库中的Table在概念上是类似的。在hive中每一个Table都有一个相应的目录存储数据。

        类似与传统数据库中的Table,每一个Table在Hive中都有一个相应的目录来存储数据。例如:一个表zz,它在HDFS中的路径为:/wh/zz,其中wh是在hive-site.xml中由$指定的数据仓库的目录,所有的Table数据(不含External Table)都保存在这个目录中。

(2)、External Table:外部表是一个已经存储在HDFS中,并具有一定格式的数据。使用外部表意味着hive表内的数据不在hive的数据仓库内,它会到仓库目录以外的位置访问数据。

        外部表和普通表的操作不同,创建普通表的操作分为两个步骤,即表的创建步骤和数据装入步骤(可以分开也可以同时完成)。在数据的装入过程中,实际数据会移动到数据表所在的hive数据仓库文件目录中,其后对该数据表的访问将直接访问装入所对应文件目录中的数据。删除表时,该表的元数据和在数据仓库目录下的实际数据将同时删除。

        外部表的创建只有一个步骤,创建表和装人数据同时完成。外部表的实际数据存储在创建语句I。OCATION参数指定的外部HDFS文件路径中,但这个数据并不会移动到hive数据仓库的文件目录中。删除外部表时,仅删除其元数据,保存在外部HDFS文件目录中的数据不会被删除。

        ExternalTable指向已存在HDFS中的数据,可创建Partition。和Table在元数据组织结构相同,在实际存储上有较大差异。Table创建和数据加载过程,可以用统一语句实现,实际数据被转移到数据仓库目录中,之后对数据的访问将会直接在数据仓库的目录中完成。删除表时,表中的数据和元数据都会删除。ExternalTable只有一个过程,因为加载数据和创建表是同时完成。世界数据是存储在Location后面指定的HDFS路径中的,并不会移动到数据仓库中。

(3)、Partition:分区对应于数据库中的分区列的密集索引,但是hive中分区的组织方式和数据库中的很不相同。在hive中,表中的一个分区对应于表下的一个目录,所有的分区的数据都存储在对应的目录中。

        类似于传统数据库中划分列的索引。在Hive中,表中的一个Partition对应于表下的一个目录,所有的Partition数据都存储在对应的目录中。例如:zz表中包含ds和city两个Partition,则对应于ds=20140214,city=beijing的HDFS子目录为:/wh/zz/ds=20140214/city=Beijing;

(4)、Bucket:桶对指定列进行哈希(hash)计算,会根据哈希值切分数据,目的是为了并行,每一个桶对应一个文件。

        对指定列计算的hash,根据hash值切分数据,目的是为了便于并行,每一个Buckets对应一个文件。将user列分数至32个Bucket上,首先对user列的值计算hash,比如,对应hash=0的HDFS目录为:/wh/zz/ds=20140214/city=Beijing/part-00000;对应hash=20的,目录为:/wh/zz/ds=20140214/city=Beijing/part-00020。


4、Hive数据管理的三个使用层次:元数据存储、数据存储和数据交换


      作为一个数据仓库,Hive的数据管理按照使用层次可以从元数据存储、数据存储和数据交换三个方面介绍。Hive的数据存储在HDFS中,大部分的查询由MapReduce完成。


4.1、元数据存储


Hive将元数据存储在RDBMS中,有三种方式可以连接到数据库:


内嵌模式:元数据保持在内嵌数据库的Derby,一般用于单元测试,只允许一个会话连接

多用户模式:在本地安装Mysql,把元数据放到Mysql内

远程模式:元数据放置在远程的Mysql数据库


4.2、数据存储


首先,Hive没有专门的数据存储格式,也没有为数据建立索引,用于可以非常自由的组织Hive中的表,只需要在创建表的时候告诉Hive数据中的列分隔符和行分隔符,这就可以解析数据了。

其次,Hive中所有的数据都存储在HDFS中,Hive中包含4中数据模型:Tabel、ExternalTable、Partition、Bucket。


4.3、数据交换


用户接口:包括客户端、Web界面和数据库接口

元数据存储:通常是存储在关系数据库中的,如Mysql,Derby等

Hadoop:用HDFS进行存储,利用MapReduce进行计算。

关键点:Hive将元数据存储在数据库中,如Mysql、Derby中。Hive中的元数据包括表的名字、表的列和分区及其属性、表的属性(是否为外部表)、表数据所在的目录等。





Hive数据管理的下载


官网下载:https://hive.apache.org/downloads.html




Hive数据管理的案例应用


1、Getting Started With Apache Hive Software¶


Check out the Getting Started Guide on the Hive wiki.

Learn more About Hive's Functionality on our wiki

Read the Getting Started Guide to learn how to install Hive

The User and Hive SQL documentation shows how to program Hive


2、Getting Involved With The Apache Hive Community¶


Apache Hive is an open source project run by volunteers at the Apache Software Foundation. Previously it was a subproject of Apache® Hadoop®, but has now graduated to become a top-level project of its own. We encourage you to learn about the project and contribute your expertise.


Give us feedback or submit bug reports: What can we do better?

Join the mailing list and meet our community

Read through our Contributor's Guides about where to find the source or submit patches

Become a Hive Fan on Facebook

Follow @ApacheHive on Twitter


相关实践学习
MySQL基础-学生管理系统数据库设计
本场景介绍如何使用DMS工具连接RDS,并使用DMS图形化工具创建数据库表。
相关文章
|
4月前
|
存储 安全 数据管理
探索区块链技术在医疗数据管理中的应用
区块链技术,一种最初为比特币而创建的分布式账本技术,已经逐渐渗透到各个行业,其中包括医疗领域。本文将深入探讨区块链技术如何革新医疗数据管理系统,提高数据安全性和互操作性,同时降低运营成本。我们将从区块链的基本原理出发,分析其在保护患者隐私、实现数据共享及优化病历管理方面的具体应用案例和潜在挑战。最后,通过实际案例和未来展望,揭示区块链技术在医疗数据管理中的巨大潜力和发展前景。
|
3月前
|
SQL 分布式计算 关系型数据库
Hadoop-21 Sqoop 数据迁移工具 简介与环境配置 云服务器 ETL工具 MySQL与Hive数据互相迁移 导入导出
Hadoop-21 Sqoop 数据迁移工具 简介与环境配置 云服务器 ETL工具 MySQL与Hive数据互相迁移 导入导出
119 3
|
3月前
|
SQL 分布式计算 Hadoop
Hadoop-12-Hive 基本介绍 下载安装配置 MariaDB安装 3台云服务Hadoop集群 架构图 对比SQL HQL
Hadoop-12-Hive 基本介绍 下载安装配置 MariaDB安装 3台云服务Hadoop集群 架构图 对比SQL HQL
98 3
|
4月前
|
SQL JavaScript 前端开发
用Java、Python来开发Hive应用
用Java、Python来开发Hive应用
47 7
|
4月前
|
SQL JavaScript 前端开发
用Java来开发Hive应用
用Java来开发Hive应用
48 7
|
4月前
|
缓存 负载均衡 数据管理
深入探索微服务架构的核心要素与实践策略在当今软件开发领域,微服务架构以其独特的优势和灵活性,已成为众多企业和开发者的首选。本文将深入探讨微服务架构的核心要素,包括服务拆分、通信机制、数据管理等,并结合实际案例分析其在不同场景下的应用策略,旨在为读者提供一套全面、深入的微服务架构实践指南。**
**微服务架构作为软件开发领域的热门话题,正引领着一场技术革新。本文从微服务架构的核心要素出发,详细阐述了服务拆分的原则与方法、通信机制的选择与优化、数据管理的策略与挑战等内容。同时,结合具体案例,分析了微服务架构在不同场景下的应用策略,为读者提供了实用的指导和建议。
|
5月前
|
存储 安全 数据管理
探索区块链技术在医疗数据管理中的应用
随着信息技术的迅猛发展,区块链作为一种分布式账本技术,其在多个领域的应用潜力逐渐被挖掘。尤其在医疗数据管理领域,区块链技术以其独特的不可篡改性、去中心化特征和高透明度,为解决数据安全和隐私保护问题提供了新的解决方案。本文将深入探讨区块链技术如何革新现有的医疗数据管理体系,包括其对提高数据安全性、确保数据完整性、促进跨机构数据共享等方面的贡献,并分析面临的挑战与未来的发展方向。
102 2
|
5月前
|
UED 存储 数据管理
深度解析 Uno Platform 离线状态处理技巧:从网络检测到本地存储同步,全方位提升跨平台应用在无网环境下的用户体验与数据管理策略
【8月更文挑战第31天】处理离线状态下的用户体验是现代应用开发的关键。本文通过在线笔记应用案例,介绍如何使用 Uno Platform 优雅地应对离线状态。首先,利用 `NetworkInformation` 类检测网络状态;其次,使用 SQLite 实现离线存储;然后,在网络恢复时同步数据;最后,通过 UI 反馈提升用户体验。
120 0
|
5月前
|
SQL 数据管理 关系型数据库
SQL与云计算:利用云数据库服务实现高效数据管理——探索云端SQL应用、性能优化、安全性与成本效益,为企业数字化转型提供全方位支持
【8月更文挑战第31天】在数字化转型中,企业对高效数据管理的需求日益增长。传统本地数据库存在局限,而云数据库服务凭借自动扩展、高可用性和按需付费等优势,成为现代数据管理的新选择。本文探讨如何利用SQL和云数据库服务(如Amazon RDS、Google Cloud SQL和Azure SQL Database)实现高效的数据管理。通过示例和最佳实践,展示SQL在云端的应用、性能优化、安全性及成本效益,助力企业提升竞争力。
84 0
|
8月前
|
SQL 数据采集 数据挖掘
大数据行业应用之Hive数据分析航班线路相关的各项指标
大数据行业应用之Hive数据分析航班线路相关的各项指标
216 1

热门文章

最新文章

下一篇
开通oss服务