BigData之Spark:Spark计算引擎的简介、下载、经典案例之详细攻略

本文涉及的产品
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
RDS AI 助手,专业版
简介: BigData之Spark:Spark计算引擎的简介、下载、经典案例之详细攻略

Spark的简介


       Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎。Spark是UC Berkeley AMP lab (加州大学伯克利分校的AMP实验室)所开源的类Hadoop MapReduce的通用并行框架,Spark,拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是Job中间输出结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的MapReduce的算法。

       Spark 是一种与 Hadoop 相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同之处使 Spark 在某些工作负载方面表现得更加优越,换句话说,Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。

       Spark 是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架。与 Hadoop 不同,Spark 和 Scala 能够紧密集成,其中的 Scala 可以像操作本地集合对象一样轻松地操作分布式数据集。

       尽管创建 Spark 是为了支持分布式数据集上的迭代作业,但是实际上它是对 Hadoop 的补充,可以在 Hadoop 文件系统中并行运行。通过名为 Mesos 的第三方集群框架可以支持此行为。Spark 由加州大学伯克利分校 AMP 实验室 (Algorithms, Machines, and People Lab) 开发,可用来构建大型的、低延迟的数据分析应用程序。




1、Spark三大特点


Spark 应用开发者可以专注于应用所要做的计算本身:高级 API 剥离了对集群本身的关注,Spark 应用开发者可以专注于应用所要做的计算本身。

Spark速度更快:Spark 很快,支持交互式计算和复杂算法。内存计算下,Spark 比 Hadoop 快100倍。使用最先进的DAG调度程序、查询优化器和物理执行引擎,实现了批处理和流数据的高性能。

Spark易用性强:用Java、Scala、Python、R和SQL快速编写应用程序。Spark 提供了80多个高级运算符。是一个通用引擎,可用它来完成各种各样的运算,包括 SQL 查询、文本处理、机器学习等,而在 Spark 出现之前,我们一般需要学习各种各样的引擎来分别处理这些需求。




Spark的下载


下载地址:https://spark.apache.org/downloads.html





Spark的经典案例


推荐:http://spark.apache.org/examples.html


1、Word Count


text_file = sc.textFile("hdfs://...")

counts = text_file.flatMap(lambda line: line.split(" ")) \

            .map(lambda word: (word, 1)) \

            .reduceByKey(lambda a, b: a + b)

counts.saveAsTextFile("hdfs://...")


2、Pi Estimation


def inside(p):

   x, y = random.random(), random.random()

   return x*x + y*y < 1

count = sc.parallelize(xrange(0, NUM_SAMPLES)) \

            .filter(inside).count()

print "Pi is roughly %f" % (4.0 * count / NUM_SAMPLES)


3、Text Search


textFile = sc.textFile("hdfs://...")

# Creates a DataFrame having a single column named "line"

df = textFile.map(lambda r: Row(r)).toDF(["line"])

errors = df.filter(col("line").like("%ERROR%"))

# Counts all the errors

errors.count()

# Counts errors mentioning MySQL

errors.filter(col("line").like("%MySQL%")).count()

# Fetches the MySQL errors as an array of strings

errors.filter(col("line").like("%MySQL%")).collect()


4、Prediction with Logistic Regression


# Every record of this DataFrame contains the label and

# features represented by a vector.

df = sqlContext.createDataFrame(data, ["label", "features"])

# Set parameters for the algorithm.

# Here, we limit the number of iterations to 10.

lr = LogisticRegression(maxIter=10)

# Fit the model to the data.

model = lr.fit(df)

# Given a dataset, predict each point's label, and show the results.

model.transform(df).show()


 


相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
相关文章
|
机器学习/深度学习 分布式计算 算法
Spark快速大数据分析PDF下载读书分享推荐
《Spark快速大数据分析》适合初学者,聚焦Spark实用技巧,同时深入核心概念。作者团队来自Databricks,书中详述Spark 3.0新特性,结合机器学习展示大数据分析。Spark是大数据分析的首选工具,本书助你驾驭这一利器。[PDF下载链接][1]。 ![Spark Book Cover][2] [1]: https://zhangfeidezhu.com/?p=345 [2]: https://i-blog.csdnimg.cn/direct/6b851489ad1944548602766ea9d62136.png#pic_center
526 1
Spark快速大数据分析PDF下载读书分享推荐
|
SQL 机器学习/深度学习 分布式计算
Spark【基础知识 01】【简介】(部分图片来源于网络)
【2月更文挑战第12天】Spark【基础知识 01】【简介】(部分图片来源于网络)
208 2
|
分布式计算 大数据 Java
大数据-87 Spark 集群 案例学习 Spark Scala 案例 手写计算圆周率、计算共同好友
大数据-87 Spark 集群 案例学习 Spark Scala 案例 手写计算圆周率、计算共同好友
228 5
|
存储 缓存 分布式计算
大数据-83 Spark 集群 RDD编程简介 RDD特点 Spark编程模型介绍
大数据-83 Spark 集群 RDD编程简介 RDD特点 Spark编程模型介绍
204 4
|
分布式计算 关系型数据库 MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
171 3
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
294 0
|
SQL 分布式计算 数据挖掘
Spark_Day07:Spark SQL(DataFrame是什么和数据分析(案例讲解))
Spark_Day07:Spark SQL(DataFrame是什么和数据分析(案例讲解))
350 0
|
设计模式 数据采集 分布式计算
企业spark案例 —出租车轨迹分析
企业spark案例 —出租车轨迹分析
542 0
|
分布式计算 大数据 Spark
大数据-95 Spark 集群 SparkSQL Action与Transformation操作 详细解释与测试案例(二)
大数据-95 Spark 集群 SparkSQL Action与Transformation操作 详细解释与测试案例(二)
180 1
|
消息中间件 分布式计算 Kafka
大数据-102 Spark Streaming Kafka ReceiveApproach DirectApproach 附带Producer、DStream代码案例
大数据-102 Spark Streaming Kafka ReceiveApproach DirectApproach 附带Producer、DStream代码案例
215 0