Py之cupy:cupy的简介、安装、使用方法之详细攻略

简介: Py之cupy:cupy的简介、安装、使用方法之详细攻略

cupy的简介

image.png   CuPy: NumPy-like API accelerated with CUDA。CuPy是NumPy兼容多维数组在CUDA上的实现。这个包(cupy)是一个源发行版。对于大多数用户,建议使用预构建的wheel 分布。

     CuPy是一个开源矩阵库,使用NVIDIA CUDA加速。CuPy使用Python提供GPU加速计算。CUPY使用CUDA相关库,包括 CuBLAS、CUDNN、Curand、CuoSver、CuPaSeSE、Cufft和NCCL,以充分利用GPU架构。图中显示库比比纽比加速。他们中的大多数人在使用CuPy开箱即用的GPU上表现良好。CuPy加速了一些超过100倍的操作,你可以在单个GPU中阅读原始的基准文章CuPy加速(RAPIDS AI)。





cupy的安装


pip install cupy


# For CUDA 8.0

pip install cupy-cuda80

# For CUDA 9.0

pip install cupy-cuda90

# For CUDA 9.1

pip install cupy-cuda91

# For CUDA 9.2

pip install cupy-cuda92

# For CUDA 10.0

pip install cupy-cuda100

# For CUDA 10.1

pip install cupy-cuda101

# Install CuPy from source

pip install cupy



cupy的使用方法


import cupy as cp

x = cp.arange(6).reshape(2, 3).astype('f')

print(x, x.sum(axis=1))

>>> x = cp.arange(6, dtype='f').reshape(2, 3)

>>> y = cp.arange(3, dtype='f')

>>> kernel = cp.ElementwiseKernel(

...     'float32 x, float32 y', 'float32 z',

...     '''if (x - 2 > y) {

...       z = x * y;

...     } else {

...       z = x + y;

...     }''',

...     'my_kernel')

>>> kernel(x, y)

array([[ 0.,  2.,  4.],

      [ 0.,  4.,  10.]], dtype=float32)


相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
相关文章
|
机器学习/深度学习 算法 大数据
机器学习:Friedman检验与Nemenyi后续检验,Python实现
机器学习:Friedman检验与Nemenyi后续检验,Python实现
1745 0
机器学习:Friedman检验与Nemenyi后续检验,Python实现
|
11月前
|
机器学习/深度学习 并行计算 调度
CuPy:将 NumPy 数组调度到 GPU 上运行
CuPy:将 NumPy 数组调度到 GPU 上运行
438 1
|
11月前
|
机器学习/深度学习 JSON 算法
实例分割笔记(一): 使用YOLOv5-Seg对图像进行分割检测完整版(从自定义数据集到测试验证的完整流程)
本文详细介绍了使用YOLOv5-Seg模型进行图像分割的完整流程,包括图像分割的基础知识、YOLOv5-Seg模型的特点、环境搭建、数据集准备、模型训练、验证、测试以及评价指标。通过实例代码,指导读者从自定义数据集开始,直至模型的测试验证,适合深度学习领域的研究者和开发者参考。
3971 3
实例分割笔记(一): 使用YOLOv5-Seg对图像进行分割检测完整版(从自定义数据集到测试验证的完整流程)
|
10月前
|
人工智能 并行计算 监控
深入剖析 Qwen2.5 - 32B 模型在 VLLM 上的单机三卡部署与运行
本文深入探讨了Qwen2.5 - 32B模型在VLLM框架上的部署过程,从模型下载、启动命令、资源占用分析到GPU资源分配及CUDA图应用,详述了大模型运行的挑战与优化策略,强调了硬件资源规划与技术调优的重要性。
6383 2
|
XML 机器学习/深度学习 数据格式
YOLOv8训练自己的数据集+常用传参说明
YOLOv8训练自己的数据集+常用传参说明
19714 1
|
机器学习/深度学习 并行计算 PyTorch
从零开始下载torch+cu(无痛版)
这篇文章提供了一个详细的无痛版教程,指导如何从零开始下载并配置支持CUDA的PyTorch GPU版本,包括查看Cuda版本、在官网检索下载包名、下载指定的torch、torchvision、torchaudio库,并在深度学习环境中安装和测试是否成功。
从零开始下载torch+cu(无痛版)
|
Linux Shell 网络安全
Kickstart 自动化安装
Kickstart结合PXE技术实现Linux系统的自动化安装,适用于需批量部署一致版本的服务器场景,以减少重复劳动。通过搭建Kickstart+DHCP+NFS+TFTP+PXE架构,服务器可远程启动并下载安装配置。具体包括:配置TFTP服务以传输启动文件,设置PXE引导参数指向Kickstart脚本,利用DHCP分配IP地址。这种方式极大地提高了部署效率与一致性。
244 2
|
机器学习/深度学习 人工智能 TensorFlow
深度学习中的图像识别技术:从理论到实践
【9月更文挑战第17天】在深度学习的浪潮中,图像识别技术以其惊人的准确率和广泛的应用前景,成为了科技领域的一颗耀眼之星。本文将通过浅显易懂的语言,带你走进图像识别的世界,探索其背后的原理,并通过实际代码示例,展示如何运用深度学习框架实现简单的图像分类任务。无论你是初学者还是有一定经验的开发者,都能从中获益。
|
数据采集 数据可视化 数据挖掘
爬虫技术对携程网旅游景点和酒店信息的数据挖掘和分析应用
爬虫技术是一种通过网络爬取目标网站的数据并进行分析的技术,它可以用于各种领域,如电子商务、社交媒体、新闻、教育等。本文将介绍如何使用爬虫技术对携程网旅游景点和酒店信息进行数据挖掘和分析,以及如何利用Selenium库和代理IP技术实现爬虫程序
1161 0