Interview:算法岗位面试—上海某公司算法岗位技术(偏机器学习,证券基金行业)面试考点之进程与线程区别、GD改进的算法、ROC和AUC

简介: Interview:算法岗位面试—上海某公司算法岗位技术(偏机器学习,证券基金行业)面试考点之进程与线程区别、GD改进的算法、ROC和AUC

一、计算基础知识


1、进程与线程五大区别——进程是线程的boss


1、根本区别—进程管资源、线程管执行:进程是操作系统资源分配的基本单位,而线程是任务调度和执行的基本单位。进程是资源分配最小单位;线程是程序执行的最小单位。

2、内存分配—进程拥有独立的地址空间

3、资源开销—进程比线程开销大、线程可频繁切换

4、内部通信—线程通信更方便、进程间通信需IPC

5、资源开销—线程可以看做轻量级的进程

6、 环境运行—线程是进程的一部分、进程可有多个线程


二、深度学习算法相关知识


1、GD改进的算法


0、SGD—多次学习随机小样本更快

1、Momentum—动量有助于在正确方向上加速梯度,从而越过沟壑

2、NAG—下山过程中,根据对下一步要到达的点的预测,来自适应调整速度

3、AdaGrad—对不同的参数调整不同的学习率

4、Adadelta—Adagrad的改进版+引入时间窗(衰减因子)

5、RMSProp—自适应学习率方法

6、Adam—为每一参数计算自适应学习率的方法。本质上是带动量项的RMSprop,融合Momentum+AdaGrad两者优点


2、ROC、AUC


image.png


1、ROC曲线四点坐标


(0,0)表示:FPR=0,TPR=0。没有负样本预测错误(也就是负样本全部预测正确),正样本全部预测错误。这说明把全部样本都预测为了负样本。

(1,1)表示:FPR=1,TPR=1。负样本全部预测错误,正样本全部预测正确。这说明把全部样本都预测为了正样本。

(0,1)表示:FPR=0,TPR=1。负样本全部预测正确,正样本全部预测正确。这个模型很完美。

(1,0)表示:FPR=1,TPR=0。负样本全部预测错误,正样本全部预测错误。这个模型太烂了。


2、ROC曲线相比P-R曲线更稳、更客观


(1)、样本不均衡时ROC基本不变而PR会变差:当正负样本的分布发生变化时,ROC曲线的形状能够基本保持不变,而P-R曲线的形状一般会发生较剧烈的变化。

(2)、ROC能够尽量降低不同测试集带来的干扰,更加客观的衡量模型本身的性能。

(3)、如果研究者希望更多地看到模型在特定数据集上的表现,P-R曲线能够更直观地反映其性能。


3、计算AUC


      直接计算正样本score大于负样本的score的概率。首先把所有样本按照score排序,依次用rank表示他们,如最大score的样本,rank=n;其次为n-1。那么对于正样本中rank最


image.png

目录
打赏
0
0
0
0
1043
分享
相关文章
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
220 6
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
387 13
机器学习算法的优化与改进:提升模型性能的策略与方法
解锁机器学习的新维度:元学习的算法与应用探秘
元学习作为一个重要的研究领域,正逐渐在多个应用领域展现其潜力。通过理解和应用元学习的基本算法,研究者可以更好地解决在样本不足或任务快速变化的情况下的学习问题。随着研究的深入,元学习有望在人工智能的未来发展中发挥更大的作用。
CCS 2024:如何严格衡量机器学习算法的隐私泄露? ETH有了新发现
在2024年CCS会议上,苏黎世联邦理工学院的研究人员提出,当前对机器学习隐私保护措施的评估可能存在严重误导。研究通过LiRA攻击评估了五种经验性隐私保护措施(HAMP、RelaxLoss、SELENA、DFKD和SSL),发现现有方法忽视最脆弱数据点、使用较弱攻击且未与实际差分隐私基线比较。结果表明这些措施在更强攻击下表现不佳,而强大的差分隐私基线则提供了更好的隐私-效用权衡。
63 14
硬核揭秘:线程与进程的底层原理,面试高分必备!
嘿,大家好!我是小米,29岁的技术爱好者。今天来聊聊线程和进程的区别。进程是操作系统中运行的程序实例,有独立内存空间;线程是进程内的最小执行单元,共享内存。创建进程开销大但更安全,线程轻量高效但易引发数据竞争。面试时可强调:进程是资源分配单位,线程是CPU调度单位。根据不同场景选择合适的并发模型,如高并发用线程池。希望这篇文章能帮你更好地理解并回答面试中的相关问题,祝你早日拿下心仪的offer!
48 6
|
3月前
|
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
120 2
机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况
本文介绍了机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况,而ROC曲线则通过假正率和真正率评估二分类模型性能。文章还提供了Python中的具体实现示例,展示了如何计算和使用这两种工具来评估模型。
151 8
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
92 1

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等