DL之ShuffleNet:ShuffleNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

简介: DL之ShuffleNet:ShuffleNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

ShuffleNet算法的简介(论文介绍)


       ShuffleNet也是应用在移动设备上的网络架构模型。


Abstract

We introduce an extremely computation-efficient CNN  architecture named ShuffleNet, which is designed specially  for mobile devices with very limited computing power (e.g.,  10-150 MFLOPs). The new architecture utilizes two new  operations, pointwise group convolution and channel shuffle,  to greatly reduce computation cost while maintaining  accuracy. Experiments on ImageNet classification and MS  COCO object detection demonstrate the superior performance  of ShuffleNet over other structures, e.g. lower top-1  error (absolute 7.8%) than recent MobileNet [12] on ImageNet  classification task, under the computation budget of  40 MFLOPs. On an ARM-based mobile device, ShuffleNet  achieves ∼13× actual speedup over AlexNet while maintaining  comparable accuracy.

摘要

我们介绍了一个非常高效的CNN架构,名为ShuffleNet,专门为计算能力非常有限的移动设备(如10-150 MFLOPs)设计。新的体系结构利用了两种新的运算,即点态组卷积和channel shuffle,在保持精度的同时,大大降低了计算成本。图像网络分类和MS-COCO目标检测实验表明,在40 MFLOPs的计算预算下,与其他结构相比,在图像网络分类任务上,ShuffleNet 具有更好的性能,例如比最近的MobileNet [12]更低的Top-1错误(绝对7.8%)。在基于ARM的移动设备上,ShuffleNet 比AlexNet实现了~13倍的实际加速,同时保持了相当的准确性。



4、Experiment


实验在ImageNet的分类集上做评估,大多数遵循ResNeXt的设置,除了两点:


权重衰减从1e-4降低到了4e-5

数据增强使用较少的aggressive scale 增强

这样做的原因是小型网络在训练过程通常会遇到欠拟合而不是过拟合问题。


1、Classification error vs. number of groups g

image.png



2、Classification error vs. various structures

image.png



3、ShuffleNet vs. MobileNet on ImageNet Classification

image.png






论文

Xiangyu Zhang, XinyuZhou, MengxiaoLin, Jian Sun.

ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. CVPR 2017.

https://arxiv.org/abs/1707.01083




ShuffleNet算法的架构详解


更新……


DL之ShuffleNet:ShuffleNet算法的架构详解https://yunyaniu.blog.csdn.net/article/details/98389299




ShuffleNet算法的案例应用


更新……


 


相关文章
|
15天前
|
Prometheus 监控 Kubernetes
Prometheus 在微服务架构中的应用
【8月更文第29天】随着微服务架构的普及,监控和跟踪各个服务的状态变得尤为重要。Prometheus 是一个开源的监控系统和时间序列数据库,非常适合用于微服务架构中的监控。本文将详细介绍 Prometheus 如何支持微服务架构下的监控需求,包括服务发现、服务间的监控指标收集以及如何配置 Prometheus 来适应这些需求。
42 0
|
18天前
|
消息中间件 SQL 监控
Serverless 应用的监控与调试问题之BMQ的架构是怎么支持流批一体的
Serverless 应用的监控与调试问题之BMQ的架构是怎么支持流批一体的
|
7天前
|
传感器 Cloud Native 物联网
Micronaut在物联网中的应用探索:轻盈架构赋能万物互联新时代
【9月更文挑战第6天】Micronaut是一个现代、轻量级的Java框架,以其高效、易用及对云原生环境的支持,在物联网开发中展现出独特优势。它通过AOT编译技术优化应用,减少内存消耗,适合资源受限的设备。Micronaut支持反应式编程和HTTP/2,提升并发处理能力和网络传输效率。本文通过一个温度传感器数据收集服务的例子,展示了如何利用Micronaut简化物联网应用开发,使其成为该领域的理想选择。
20 3
|
11天前
|
机器学习/深度学习 算法 数据挖掘
R语言中的支持向量机(SVM)与K最近邻(KNN)算法实现与应用
【9月更文挑战第2天】无论是支持向量机还是K最近邻算法,都是机器学习中非常重要的分类算法。它们在R语言中的实现相对简单,但各有其优缺点和适用场景。在实际应用中,应根据数据的特性、任务的需求以及计算资源的限制来选择合适的算法。通过不断地实践和探索,我们可以更好地掌握这些算法并应用到实际的数据分析和机器学习任务中。
|
16天前
|
Kubernetes Cloud Native 开发者
云原生技术在现代IT架构中的应用与挑战
【8月更文挑战第27天】 随着云计算的飞速发展,云原生技术已经成为推动企业数字化转型的重要力量。本文将深入探讨云原生技术的核心概念、优势以及在实际应用中遇到的挑战,并通过具体代码示例展示如何利用云原生技术优化IT架构。
|
16天前
|
算法 C++
A : DS串应用–KMP算法
这篇文章提供了KMP算法的C++实现,包括计算模式串的next数组和在主串中查找模式串位置的函数,用于演示KMP算法的基本应用。
|
4天前
|
机器学习/深度学习 算法 Python
群智能算法:深入解读人工水母算法:原理、实现与应用
近年来,受自然界生物行为启发的优化算法备受关注。人工水母算法(AJSA)模拟水母在海洋中寻找食物的行为,是一种新颖的优化技术。本文详细解读其原理及实现步骤,并提供代码示例,帮助读者理解这一算法。在多模态、非线性优化问题中,AJSA表现出色,具有广泛应用前景。
|
13天前
|
存储 前端开发 数据库
神秘编程世界惊现强大架构!Web2py 的 MVC 究竟隐藏着怎样的神奇魔力?带你探索实际应用之谜!
【8月更文挑战第31天】在现代 Web 开发中,MVC(Model-View-Controller)架构被广泛应用,将应用程序分为模型、视图和控制器三个部分,有助于提高代码的可维护性、可扩展性和可测试性。Web2py 是一个采用 MVC 架构的 Python Web 框架,其中模型处理数据和业务逻辑,视图负责呈现数据给用户,控制器则协调模型和视图之间的交互。
20 0
|
14天前
|
运维 应用服务中间件 网络安全
自动化运维的新篇章:Ansible在现代IT架构中的应用与实践
【8月更文挑战第30天】随着信息技术的飞速发展,企业对运维效率和可靠性的要求日益增高。传统的手动运维方式已难以应对复杂多变的IT环境,自动化运维因此成为行业新宠。本文将深入探讨Ansible这一流行的自动化工具,如何通过其简洁的配置管理和强大的多节点部署能力,助力现代IT架构实现高效、可靠的运维管理。我们将从Ansible的核心概念入手,逐步解析其在配置管理、任务执行、应用部署等方面的实战应用,并结合代码示例,展示如何利用Ansible简化日常运维工作,提升运维质量和效率。无论你是运维新手还是资深专家,这篇文章都将为你提供宝贵的洞见和实操技巧。
|
7天前
|
算法 BI Serverless
基于鱼群算法的散热片形状优化matlab仿真
本研究利用浴盆曲线模拟空隙外形,并通过鱼群算法(FSA)优化浴盆曲线参数,以获得最佳孔隙度值及对应的R值。FSA通过模拟鱼群的聚群、避障和觅食行为,实现高效全局搜索。具体步骤包括初始化鱼群、计算适应度值、更新位置及判断终止条件。最终确定散热片的最佳形状参数。仿真结果显示该方法能显著提高优化效率。相关代码使用MATLAB 2022a实现。