DL之GCN:GCN算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

简介: DL之GCN:GCN算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

GCN算法的简介(论文介绍)


     作者在该论文中,强调了Large Kernel的重要性。


Abstract  

      One of recent trends [30, 31, 14] in network architecture  design is stacking small filters (e.g., 1x1 or 3x3) in the  entire network because the stacked small filters is more efficient  than a large kernel, given the same computational  complexity. However, in the field of semantic segmentation,  where we need to perform dense per-pixel prediction,  we find that the large kernel (and effective receptive field)  plays an important role when we have to perform the classification  and localization tasks simultaneously. Following  our design principle, we propose a Global Convolutional  Network to address both the classification and localization  issues for the semantic segmentation. We also suggest a  residual-based boundary refinement to further refine the object  boundaries. Our approach achieves state-of-art performance  on two public benchmarks and significantly outperforms  previous results, 82.2% (vs 80.2%) on PASCAL VOC  2012 dataset and 76.9% (vs 71.8%) on Cityscapes dataset.

      最近网络架构设计的一个趋势是在整个网络中堆叠小过滤器(例如1x1或3x3),因为在相同的计算复杂度下,堆叠小过滤器比大型内核更有效。然而,在语义分割领域,我们需要进行密集的逐像素预测,我们发现,当我们必须同时执行分类和定位任务时,大核(有效接受域)发挥着重要作用。根据我们的设计原则,我们提出了一个全局卷积网络来解决语义分割的分类和定位问题。我们还建议基于残差的边界细化来进一步细化对象边界。我们的方法在两个公共基准上实现了最先进的性能,并显著优于之前的结果,分别是PASCAL VOC 2012数据集的82.2% (vs . 80.2%)和Cityscapes数据集的76.9% (vs . 71.8%)。

Conclusion  

      According to our analysis on classification and segmentation,  we find that large kernels is crucial to relieve the  contradiction between classification and localization. Following  the principle of large-size kernels, we propose the  Global Convolutional Network. The ablation experiments  show that our proposed structures meet a good trade-off  between valid receptive field and the number of parameters,  while achieves good performance. To further refine  the object boundaries, we present a novel Boundary Refinement  block. Qualitatively, our Global Convolutional  Network mainly improve the internal regions while Boundary  Refinement increase performance near boundaries. Our  best model achieves state-of-the-art on two public benchmarks:  PASCAL VOC 2012 (82.2%) and Cityscapes  (76.9%).

      通过对分类和分割的分析,我们发现大内核对于缓解分类和定位之间的矛盾至关重要。根据大内核的原理,我们提出了全球卷积网络。腐蚀实验表明,我们提出的结构在有效接受域和参数之间达到了很好的平衡,同时取得了较好的性能。为了进一步细化对象边界,我们提出了一种新的边界细化块。在质量上,我们的全局卷积网络主要是对内部区域进行改进,而边界细化则提高了边界附近的性能。我们最好的模型达到了最先进的两个公共基准:帕斯卡VOC 2012(82.2%)和城市景观(76.9%)。


论文

Chao Peng, XiangyuZhang, Gang Yu, GuimingLuo, Jian Sun.

Large Kernel Matters ——

Improve Semantic Segmentation by Global Convolutional Network. CVPR 2017.

https://arxiv.org/abs/1703.02719



0、实验结果


1、PASCAL VOC 2012 validation set


image.png


2、PASCAL VOC 2012和ImageNet


standard benchmark:PASCAL VOC 2012 and Cityscapes    标准基准:2012年PASCAL VOC和Cityscapes

ResNet152 (pretrained on ImageNet) as the base model for fine tuning.  ResNet152(在ImageNet上预训练)作为微调的基本模型。

image.png



3、Examples of semantic segmentation results on PASCAL VOC 2012

image.png



4、Examples of semantic segmentation results on Cityscapes

image.png





GCN算法的架构详解


更新……




GCN算法的案例应用


更新……



目录
打赏
0
0
0
0
1044
分享
相关文章
MySQL原理简介—2.InnoDB架构原理和执行流程
本文介绍了MySQL中更新语句的执行流程及其背后的机制,主要包括: 1. **更新语句的执行流程**:从SQL解析到执行器调用InnoDB存储引擎接口。 2. **Buffer Pool缓冲池**:缓存磁盘数据,减少磁盘I/O。 3. **Undo日志**:记录更新前的数据,支持事务回滚。 4. **Redo日志**:确保事务持久性,防止宕机导致的数据丢失。 5. **Binlog日志**:记录逻辑操作,用于数据恢复和主从复制。 6. **事务提交机制**:包括redo日志和binlog日志的刷盘策略,确保数据一致性。 7. **后台IO线程**:将内存中的脏数据异步刷入磁盘。
154 12
NeurIPS 2024最佳论文,扩散模型的创新替代:基于多尺度预测的视觉自回归架构
本文详细解读NeurIPS 2024最佳论文《视觉自回归建模:基于下一尺度预测的可扩展图像生成》。该研究提出VAR模型,通过多尺度token图和VAR Transformer结构,实现高效、高质量的图像生成,解决了传统自回归模型在二维结构信息、泛化能力和计算效率上的局限。实验表明,VAR在图像质量和速度上超越现有扩散模型,并展示出良好的扩展性和零样本泛化能力。未来研究将聚焦于文本引导生成和视频生成等方向。
477 8
NeurIPS 2024最佳论文,扩散模型的创新替代:基于多尺度预测的视觉自回归架构
NVIDIA Triton系列02-功能与架构简介
本文介绍了NVIDIA Triton推理服务器的功能与架构,强调其不仅适用于大型服务类应用,还能广泛应用于各类推理场景。Triton支持多种模型格式、查询类型和部署方式,具备高效的模型管理和优化能力,确保高性能和系统稳定性。文章详细解析了Triton的主从架构,包括模型仓库、客户端应用、通信协议和推理服务器的核心功能模块。
221 1
NVIDIA Triton系列02-功能与架构简介
Hadoop-33 HBase 初识简介 项目简介 整体架构 HMaster HRegionServer Region
Hadoop-33 HBase 初识简介 项目简介 整体架构 HMaster HRegionServer Region
95 2
Hadoop-26 ZooKeeper集群 3台云服务器 基础概念简介与环境的配置使用 架构组成 分布式协调框架 Leader Follower Observer
Hadoop-26 ZooKeeper集群 3台云服务器 基础概念简介与环境的配置使用 架构组成 分布式协调框架 Leader Follower Observer
91 0
神经网络架构殊途同归?ICML 2024论文:模型不同,但学习内容相同
【8月更文挑战第3天】《神经语言模型的缩放定律》由OpenAI研究人员完成并在ICML 2024发表。研究揭示了模型性能与大小、数据集及计算资源间的幂律关系,表明增大任一资源均可预测地提升性能。此外,论文指出模型宽度与深度对性能影响较小,较大模型在更多数据上训练能更好泛化,且能高效利用计算资源。研究提供了训练策略建议,对于神经语言模型优化意义重大,但也存在局限性,需进一步探索。论文链接:[https://arxiv.org/abs/2001.08361]。
106 1
后端服务架构的微服务化转型
本文旨在探讨后端服务从单体架构向微服务架构转型的过程,分析微服务架构的优势和面临的挑战。文章首先介绍单体架构的局限性,然后详细阐述微服务架构的核心概念及其在现代软件开发中的应用。通过对比两种架构,指出微服务化转型的必要性和实施策略。最后,讨论了微服务架构实施过程中可能遇到的问题及解决方案。
云原生时代的应用架构演进:从微服务到 Serverless 的阿里云实践
云原生技术正重塑企业数字化转型路径。阿里云作为亚太领先云服务商,提供完整云原生产品矩阵:容器服务ACK优化启动速度与镜像分发效率;MSE微服务引擎保障高可用性;ASM服务网格降低资源消耗;函数计算FC突破冷启动瓶颈;SAE重新定义PaaS边界;PolarDB数据库实现存储计算分离;DataWorks简化数据湖构建;Flink实时计算助力风控系统。这些技术已在多行业落地,推动效率提升与商业模式创新,助力企业在数字化浪潮中占据先机。
77 12
云计算的未来:云原生架构与微服务的革命####
【10月更文挑战第21天】 随着企业数字化转型的加速,云原生技术正迅速成为IT行业的新宠。本文深入探讨了云原生架构的核心理念、关键技术如容器化和微服务的优势,以及如何通过这些技术实现高效、灵活且可扩展的现代应用开发。我们将揭示云原生如何重塑软件开发流程,提升业务敏捷性,并探索其对企业IT架构的深远影响。 ####
119 3

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等