DL之GCN:GCN算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

简介: DL之GCN:GCN算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

GCN算法的简介(论文介绍)


     作者在该论文中,强调了Large Kernel的重要性。


Abstract  

      One of recent trends [30, 31, 14] in network architecture  design is stacking small filters (e.g., 1x1 or 3x3) in the  entire network because the stacked small filters is more efficient  than a large kernel, given the same computational  complexity. However, in the field of semantic segmentation,  where we need to perform dense per-pixel prediction,  we find that the large kernel (and effective receptive field)  plays an important role when we have to perform the classification  and localization tasks simultaneously. Following  our design principle, we propose a Global Convolutional  Network to address both the classification and localization  issues for the semantic segmentation. We also suggest a  residual-based boundary refinement to further refine the object  boundaries. Our approach achieves state-of-art performance  on two public benchmarks and significantly outperforms  previous results, 82.2% (vs 80.2%) on PASCAL VOC  2012 dataset and 76.9% (vs 71.8%) on Cityscapes dataset.

      最近网络架构设计的一个趋势是在整个网络中堆叠小过滤器(例如1x1或3x3),因为在相同的计算复杂度下,堆叠小过滤器比大型内核更有效。然而,在语义分割领域,我们需要进行密集的逐像素预测,我们发现,当我们必须同时执行分类和定位任务时,大核(有效接受域)发挥着重要作用。根据我们的设计原则,我们提出了一个全局卷积网络来解决语义分割的分类和定位问题。我们还建议基于残差的边界细化来进一步细化对象边界。我们的方法在两个公共基准上实现了最先进的性能,并显著优于之前的结果,分别是PASCAL VOC 2012数据集的82.2% (vs . 80.2%)和Cityscapes数据集的76.9% (vs . 71.8%)。

Conclusion  

      According to our analysis on classification and segmentation,  we find that large kernels is crucial to relieve the  contradiction between classification and localization. Following  the principle of large-size kernels, we propose the  Global Convolutional Network. The ablation experiments  show that our proposed structures meet a good trade-off  between valid receptive field and the number of parameters,  while achieves good performance. To further refine  the object boundaries, we present a novel Boundary Refinement  block. Qualitatively, our Global Convolutional  Network mainly improve the internal regions while Boundary  Refinement increase performance near boundaries. Our  best model achieves state-of-the-art on two public benchmarks:  PASCAL VOC 2012 (82.2%) and Cityscapes  (76.9%).

      通过对分类和分割的分析,我们发现大内核对于缓解分类和定位之间的矛盾至关重要。根据大内核的原理,我们提出了全球卷积网络。腐蚀实验表明,我们提出的结构在有效接受域和参数之间达到了很好的平衡,同时取得了较好的性能。为了进一步细化对象边界,我们提出了一种新的边界细化块。在质量上,我们的全局卷积网络主要是对内部区域进行改进,而边界细化则提高了边界附近的性能。我们最好的模型达到了最先进的两个公共基准:帕斯卡VOC 2012(82.2%)和城市景观(76.9%)。


论文

Chao Peng, XiangyuZhang, Gang Yu, GuimingLuo, Jian Sun.

Large Kernel Matters ——

Improve Semantic Segmentation by Global Convolutional Network. CVPR 2017.

https://arxiv.org/abs/1703.02719



0、实验结果


1、PASCAL VOC 2012 validation set


image.png


2、PASCAL VOC 2012和ImageNet


standard benchmark:PASCAL VOC 2012 and Cityscapes    标准基准:2012年PASCAL VOC和Cityscapes

ResNet152 (pretrained on ImageNet) as the base model for fine tuning.  ResNet152(在ImageNet上预训练)作为微调的基本模型。

image.png



3、Examples of semantic segmentation results on PASCAL VOC 2012

image.png



4、Examples of semantic segmentation results on Cityscapes

image.png





GCN算法的架构详解


更新……




GCN算法的案例应用


更新……



相关文章
|
12天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的优化算法及其应用
本文旨在探讨深度学习中常用的优化算法,包括梯度下降、动量方法、AdaGrad、RMSProp和Adam等。通过分析每种算法的原理、优缺点及适用场景,揭示它们在训练深度神经网络过程中的关键作用。同时,结合具体实例展示这些优化算法在实际应用中的效果,为读者提供选择合适优化算法的参考依据。
|
13天前
|
算法 前端开发 机器人
一文了解分而治之和动态规则算法在前端中的应用
该文章详细介绍了分而治之策略和动态规划算法在前端开发中的应用,并通过具体的例子和LeetCode题目解析来说明这两种算法的特点及使用场景。
一文了解分而治之和动态规则算法在前端中的应用
|
19天前
|
算法 调度
贪心算法基本概念与应用场景
尽管贪心算法在许多问题中都非常有效,但它并不总是会产生最优解。因此,在应用贪心算法前,重要的是先分析问题是否适合采用贪心策略。一些问题可能需要通过动态规划或回溯等其他算法来解决,以找到确切的全局最优解。
50 1
|
13天前
|
算法 前端开发
一文了解贪心算法和回溯算法在前端中的应用
该文章深入讲解了贪心算法与回溯算法的原理及其在前端开发中的具体应用,并通过分析LeetCode题目来展示这两种算法的解题思路与实现方法。
|
2天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
1天前
|
算法 决策智能
基于禁忌搜索算法的VRP问题求解matlab仿真,带GUI界面,可设置参数
该程序基于禁忌搜索算法求解车辆路径问题(VRP),使用MATLAB2022a版本实现,并带有GUI界面。用户可通过界面设置参数并查看结果。禁忌搜索算法通过迭代改进当前解,并利用记忆机制避免陷入局部最优。程序包含初始化、定义邻域结构、设置禁忌列表等步骤,最终输出最优路径和相关数据图表。
|
2天前
|
编解码 算法 数据挖掘
基于MUSIC算法的六阵元圆阵DOA估计matlab仿真
该程序使用MATLAB 2022a版本实现基于MUSIC算法的六阵元圆阵DOA估计仿真。MUSIC算法通过区分信号和噪声子空间,利用协方差矩阵的特征向量估计信号到达方向。程序计算了不同角度下的MUSIC谱,并绘制了三维谱图及对数谱图,展示了高分辨率的DOA估计结果。适用于各种形状的麦克风阵列,尤其在声源定位中表现出色。
|
8天前
|
传感器 算法 C语言
基于无线传感器网络的节点分簇算法matlab仿真
该程序对传感器网络进行分簇,考虑节点能量状态、拓扑位置及孤立节点等因素。相较于LEACH算法,本程序评估网络持续时间、节点死亡趋势及能量消耗。使用MATLAB 2022a版本运行,展示了节点能量管理优化及网络生命周期延长的效果。通过簇头管理和数据融合,实现了能量高效和网络可扩展性。
|
2天前
|
数据采集 算法 5G
基于稀疏CoSaMP算法的大规模MIMO信道估计matlab性能仿真,对比LS,OMP,MOMP,CoSaMP
该研究采用MATLAB 2022a仿真大规模MIMO系统中的信道估计,利用压缩感知技术克服传统方法的高开销问题。在稀疏信号恢复理论基础上,通过CoSaMP等算法实现高效信道估计。核心程序对比了LS、OMP、NOMP及CoSaMP等多种算法的均方误差(MSE),验证其在不同信噪比下的性能。仿真结果显示,稀疏CoSaMP表现优异。
9 2
|
4天前
|
算法 数据挖掘
基于粒子群优化算法的图象聚类识别matlab仿真
该程序基于粒子群优化(PSO)算法实现图像聚类识别,能识别0~9的数字图片。在MATLAB2017B环境下运行,通过特征提取、PSO优化找到最佳聚类中心,提高识别准确性。PSO模拟鸟群捕食行为,通过粒子间的协作优化搜索过程。程序包括图片读取、特征提取、聚类分析及结果展示等步骤,实现了高效的图像识别。