DL之GCN:GCN算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

简介: DL之GCN:GCN算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

GCN算法的简介(论文介绍)


     作者在该论文中,强调了Large Kernel的重要性。


Abstract  

      One of recent trends [30, 31, 14] in network architecture  design is stacking small filters (e.g., 1x1 or 3x3) in the  entire network because the stacked small filters is more efficient  than a large kernel, given the same computational  complexity. However, in the field of semantic segmentation,  where we need to perform dense per-pixel prediction,  we find that the large kernel (and effective receptive field)  plays an important role when we have to perform the classification  and localization tasks simultaneously. Following  our design principle, we propose a Global Convolutional  Network to address both the classification and localization  issues for the semantic segmentation. We also suggest a  residual-based boundary refinement to further refine the object  boundaries. Our approach achieves state-of-art performance  on two public benchmarks and significantly outperforms  previous results, 82.2% (vs 80.2%) on PASCAL VOC  2012 dataset and 76.9% (vs 71.8%) on Cityscapes dataset.

      最近网络架构设计的一个趋势是在整个网络中堆叠小过滤器(例如1x1或3x3),因为在相同的计算复杂度下,堆叠小过滤器比大型内核更有效。然而,在语义分割领域,我们需要进行密集的逐像素预测,我们发现,当我们必须同时执行分类和定位任务时,大核(有效接受域)发挥着重要作用。根据我们的设计原则,我们提出了一个全局卷积网络来解决语义分割的分类和定位问题。我们还建议基于残差的边界细化来进一步细化对象边界。我们的方法在两个公共基准上实现了最先进的性能,并显著优于之前的结果,分别是PASCAL VOC 2012数据集的82.2% (vs . 80.2%)和Cityscapes数据集的76.9% (vs . 71.8%)。

Conclusion  

      According to our analysis on classification and segmentation,  we find that large kernels is crucial to relieve the  contradiction between classification and localization. Following  the principle of large-size kernels, we propose the  Global Convolutional Network. The ablation experiments  show that our proposed structures meet a good trade-off  between valid receptive field and the number of parameters,  while achieves good performance. To further refine  the object boundaries, we present a novel Boundary Refinement  block. Qualitatively, our Global Convolutional  Network mainly improve the internal regions while Boundary  Refinement increase performance near boundaries. Our  best model achieves state-of-the-art on two public benchmarks:  PASCAL VOC 2012 (82.2%) and Cityscapes  (76.9%).

      通过对分类和分割的分析,我们发现大内核对于缓解分类和定位之间的矛盾至关重要。根据大内核的原理,我们提出了全球卷积网络。腐蚀实验表明,我们提出的结构在有效接受域和参数之间达到了很好的平衡,同时取得了较好的性能。为了进一步细化对象边界,我们提出了一种新的边界细化块。在质量上,我们的全局卷积网络主要是对内部区域进行改进,而边界细化则提高了边界附近的性能。我们最好的模型达到了最先进的两个公共基准:帕斯卡VOC 2012(82.2%)和城市景观(76.9%)。


论文

Chao Peng, XiangyuZhang, Gang Yu, GuimingLuo, Jian Sun.

Large Kernel Matters ——

Improve Semantic Segmentation by Global Convolutional Network. CVPR 2017.

https://arxiv.org/abs/1703.02719



0、实验结果


1、PASCAL VOC 2012 validation set


image.png


2、PASCAL VOC 2012和ImageNet


standard benchmark:PASCAL VOC 2012 and Cityscapes    标准基准:2012年PASCAL VOC和Cityscapes

ResNet152 (pretrained on ImageNet) as the base model for fine tuning.  ResNet152(在ImageNet上预训练)作为微调的基本模型。

image.png



3、Examples of semantic segmentation results on PASCAL VOC 2012

image.png



4、Examples of semantic segmentation results on Cityscapes

image.png





GCN算法的架构详解


更新……




GCN算法的案例应用


更新……



相关文章
|
21天前
|
运维 Cloud Native 持续交付
深入理解云原生架构及其在现代企业中的应用
随着数字化转型的浪潮席卷全球,企业正面临着前所未有的挑战与机遇。云计算技术的迅猛发展,特别是云原生架构的兴起,正在重塑企业的IT基础设施和软件开发模式。本文将深入探讨云原生的核心概念、关键技术以及如何在企业中实施云原生策略,以实现更高效的资源利用和更快的市场响应速度。通过分析云原生架构的优势和面临的挑战,我们将揭示它如何助力企业在激烈的市场竞争中保持领先地位。
|
25天前
|
Cloud Native 安全 持续交付
深入理解微服务架构及其在现代软件开发中的应用
深入理解微服务架构及其在现代软件开发中的应用
41 3
|
25天前
|
运维 Kubernetes Docker
深入理解容器化技术及其在微服务架构中的应用
深入理解容器化技术及其在微服务架构中的应用
51 1
|
26天前
|
监控 持续交付 API
深入理解微服务架构及其在现代应用开发中的应用
深入理解微服务架构及其在现代应用开发中的应用
24 0
|
19天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
25天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
5天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
13天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
21天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
13天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。