DL之DeconvNet:DeconvNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

简介: DL之DeconvNet:DeconvNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

DeconvNet算法的简介(论文介绍)


       DeconvNet网络架构,是由Convolution network、Deconvolution network两种架构组成。


Convolution network:feature extractor,采用VGG-16提取特征;

Deconvolution network:shape generator,通过上采样,计算像素的类别得分图。

Abstract  

      We propose a novel semantic segmentation algorithm by  learning a deconvolution network. We learn the network  on top of the convolutional layers adopted from VGG 16-  layer net. The deconvolution network is composed of deconvolution  and unpooling layers, which identify pixel-wise  class labels and predict segmentation masks. We apply the  trained network to each proposal in an input image, and  construct the final semantic segmentation map by combining  the results from all proposals in a simple manner. The  proposed algorithm mitigates the limitations of the existing  methods based on fully convolutional networks by integrating  deep deconvolution network and proposal-wise  prediction; our segmentation method typically identifies detailed  structures and handles objects in multiple scales naturally.  Our network demonstrates outstanding performance  in PASCAL VOC 2012 dataset, and we achieve the best accuracy  (72.5%) among the methods trained with no external  data through ensemble with the fully convolutional network.

      本文提出了一种新的基于反卷积网络的语义分割算法。我们学习了VGG 16层网在卷积层之上的网络。反卷积网络由反褶积层和反池层组成,它们识别像素级标签并预测分割掩码。我们将训练好的网络应用于输入图像中的每个提案,并将所有提案的结果以一种简单的方式结合起来,构造出最终的语义分割图。该算法将深度反卷积网络与建议预测相结合,克服了现有全卷积网络方法的局限性;我们的分割方法通常识别详细的结构和处理对象在多个尺度自然。我们的网络在PASCAL VOC 2012数据集中表现出色,通过全卷积网络集成,在没有外部数据训练的方法中,我们的准确率最高(72.5%)。

Conclusion  

      We proposed a novel semantic segmentation algorithm  by learning a deconvolution network. The proposed deconvolution  network is suitable to generate dense and pre-cise object segmentation masks since coarse-to-fine structures  of an object is reconstructed progressively through  a sequence of deconvolution operations. Our algorithm  based on instance-wise prediction is advantageous to handle  object scale variations by eliminating the limitation  of fixed-size receptive field in the fully convolutional network.  We further proposed an ensemble approach, which  combines the outputs of the proposed algorithm and FCNbased  method, and achieved substantially better performance  thanks to complementary characteristics of both algorithms.  Our network demonstrated the state-of-the-art  performance in PASCAL VOC 2012 segmentation benchmark  among the methods trained with no external data.

      本文提出了一种新的基于反卷积网络的语义分割算法。该反褶积网络通过一系列的反卷积操作,逐步重构出由粗到细的目标结构,适用于生成密集的预分割掩码。我们的基于实例预测的算法消除了全卷积网络中固定大小接受域的限制,有利于处理对象尺度变化。我们进一步提出了一种集成方法,将所提算法的输出与基于FCN的方法相结合,由于两种算法的互补特性,取得了较好的性能。在没有外部数据训练的方法中,我们的网络在PASCAL VOC 2012分割基准测试中展示了最先进的性能。



论文

Hyeonwoo Noh, SeunghoonHong, BohyungHan.

Learning deconvolution network for semantic segmentation, ICLR, 2015.

https://arxiv.org/abs/1505.04366


 


相关文章
|
21天前
|
缓存 负载均衡 数据管理
深入探索微服务架构的核心要素与实践策略在当今软件开发领域,微服务架构以其独特的优势和灵活性,已成为众多企业和开发者的首选。本文将深入探讨微服务架构的核心要素,包括服务拆分、通信机制、数据管理等,并结合实际案例分析其在不同场景下的应用策略,旨在为读者提供一套全面、深入的微服务架构实践指南。**
**微服务架构作为软件开发领域的热门话题,正引领着一场技术革新。本文从微服务架构的核心要素出发,详细阐述了服务拆分的原则与方法、通信机制的选择与优化、数据管理的策略与挑战等内容。同时,结合具体案例,分析了微服务架构在不同场景下的应用策略,为读者提供了实用的指导和建议。
|
2月前
|
前端开发 大数据 数据库
🔥大数据洪流下的决战:JSF 表格组件如何做到毫秒级响应?揭秘背后的性能魔法!💪
【8月更文挑战第31天】在 Web 应用中,表格组件常用于展示和操作数据,但在大数据量下性能会成瓶颈。本文介绍在 JavaServer Faces(JSF)中优化表格组件的方法,包括数据处理、分页及懒加载等技术。通过后端分页或懒加载按需加载数据,减少不必要的数据加载和优化数据库查询,并利用缓存机制减少数据库访问次数,从而提高表格组件的响应速度和整体性能。掌握这些最佳实践对开发高性能 JSF 应用至关重要。
47 0
|
2月前
|
存储 设计模式 运维
Angular遇上Azure Functions:探索无服务器架构下的开发实践——从在线投票系统案例深入分析前端与后端的协同工作
【8月更文挑战第31天】在现代软件开发中,无服务器架构因可扩展性和成本效益而备受青睐。本文通过构建一个在线投票应用,介绍如何结合Angular前端框架与Azure Functions后端服务,快速搭建高效、可扩展的应用系统。Angular提供响应式编程和组件化能力,适合构建动态用户界面;Azure Functions则简化了后端逻辑处理与数据存储。通过具体示例代码,详细展示了从设置Azure Functions到整合Angular前端的全过程,帮助开发者轻松上手无服务器应用开发。
17 0
|
4月前
|
缓存 NoSQL Java
案例 采用Springboot默认的缓存方案Simple在三层架构中完成一个手机验证码生成校验的程序
案例 采用Springboot默认的缓存方案Simple在三层架构中完成一个手机验证码生成校验的程序
95 5
|
3月前
|
存储 算法 Java
高并发架构设计三大利器:缓存、限流和降级问题之滑动日志算法问题如何解决
高并发架构设计三大利器:缓存、限流和降级问题之滑动日志算法问题如何解决
|
3月前
|
算法 Java 调度
高并发架构设计三大利器:缓存、限流和降级问题之使用Java代码实现令牌桶算法问题如何解决
高并发架构设计三大利器:缓存、限流和降级问题之使用Java代码实现令牌桶算法问题如何解决
|
3月前
|
缓存 算法 Java
高并发架构设计三大利器:缓存、限流和降级问题之使用代码实现漏桶算法问题如何解决
高并发架构设计三大利器:缓存、限流和降级问题之使用代码实现漏桶算法问题如何解决
|
3月前
|
算法 UED 缓存
高并发架构设计三大利器:缓存、限流和降级问题之滑动窗口算法适用于哪些场景
高并发架构设计三大利器:缓存、限流和降级问题之滑动窗口算法适用于哪些场景
|
3月前
|
存储 算法 缓存
高并发架构设计三大利器:缓存、限流和降级问题之滑动窗口算法的原理是什么
高并发架构设计三大利器:缓存、限流和降级问题之滑动窗口算法的原理是什么
|
3月前
|
算法 API 缓存
高并发架构设计三大利器:缓存、限流和降级问题之固定窗口限流算法的原理是什么
高并发架构设计三大利器:缓存、限流和降级问题之固定窗口限流算法的原理是什么
下一篇
无影云桌面