DL之DeconvNet:DeconvNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

简介: DL之DeconvNet:DeconvNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

DeconvNet算法的简介(论文介绍)


       DeconvNet网络架构,是由Convolution network、Deconvolution network两种架构组成。


Convolution network:feature extractor,采用VGG-16提取特征;

Deconvolution network:shape generator,通过上采样,计算像素的类别得分图。

Abstract  

      We propose a novel semantic segmentation algorithm by  learning a deconvolution network. We learn the network  on top of the convolutional layers adopted from VGG 16-  layer net. The deconvolution network is composed of deconvolution  and unpooling layers, which identify pixel-wise  class labels and predict segmentation masks. We apply the  trained network to each proposal in an input image, and  construct the final semantic segmentation map by combining  the results from all proposals in a simple manner. The  proposed algorithm mitigates the limitations of the existing  methods based on fully convolutional networks by integrating  deep deconvolution network and proposal-wise  prediction; our segmentation method typically identifies detailed  structures and handles objects in multiple scales naturally.  Our network demonstrates outstanding performance  in PASCAL VOC 2012 dataset, and we achieve the best accuracy  (72.5%) among the methods trained with no external  data through ensemble with the fully convolutional network.

      本文提出了一种新的基于反卷积网络的语义分割算法。我们学习了VGG 16层网在卷积层之上的网络。反卷积网络由反褶积层和反池层组成,它们识别像素级标签并预测分割掩码。我们将训练好的网络应用于输入图像中的每个提案,并将所有提案的结果以一种简单的方式结合起来,构造出最终的语义分割图。该算法将深度反卷积网络与建议预测相结合,克服了现有全卷积网络方法的局限性;我们的分割方法通常识别详细的结构和处理对象在多个尺度自然。我们的网络在PASCAL VOC 2012数据集中表现出色,通过全卷积网络集成,在没有外部数据训练的方法中,我们的准确率最高(72.5%)。

Conclusion  

      We proposed a novel semantic segmentation algorithm  by learning a deconvolution network. The proposed deconvolution  network is suitable to generate dense and pre-cise object segmentation masks since coarse-to-fine structures  of an object is reconstructed progressively through  a sequence of deconvolution operations. Our algorithm  based on instance-wise prediction is advantageous to handle  object scale variations by eliminating the limitation  of fixed-size receptive field in the fully convolutional network.  We further proposed an ensemble approach, which  combines the outputs of the proposed algorithm and FCNbased  method, and achieved substantially better performance  thanks to complementary characteristics of both algorithms.  Our network demonstrated the state-of-the-art  performance in PASCAL VOC 2012 segmentation benchmark  among the methods trained with no external data.

      本文提出了一种新的基于反卷积网络的语义分割算法。该反褶积网络通过一系列的反卷积操作,逐步重构出由粗到细的目标结构,适用于生成密集的预分割掩码。我们的基于实例预测的算法消除了全卷积网络中固定大小接受域的限制,有利于处理对象尺度变化。我们进一步提出了一种集成方法,将所提算法的输出与基于FCN的方法相结合,由于两种算法的互补特性,取得了较好的性能。在没有外部数据训练的方法中,我们的网络在PASCAL VOC 2012分割基准测试中展示了最先进的性能。



论文

Hyeonwoo Noh, SeunghoonHong, BohyungHan.

Learning deconvolution network for semantic segmentation, ICLR, 2015.

https://arxiv.org/abs/1505.04366


 


相关文章
|
4月前
|
存储 监控 JavaScript
基于布隆过滤器的 Node.js 算法在局域网电脑桌面监控设备快速校验中的应用研究
本文探讨了布隆过滤器在局域网电脑桌面监控中的应用,分析其高效空间利用率、快速查询性能及动态扩容优势,并设计了基于MAC地址的校验模型,提供Node.js实现代码,适用于设备准入控制与重复数据过滤场景。
223 0
|
3月前
|
运维 监控 JavaScript
基于 Node.js 图结构的局域网设备拓扑分析算法在局域网内监控软件中的应用研究
本文探讨图结构在局域网监控系统中的应用,通过Node.js实现设备拓扑建模、路径分析与故障定位,提升网络可视化、可追溯性与运维效率,结合模拟实验验证其高效性与准确性。
269 3
|
3月前
|
机器学习/深度学习 资源调度 算法
遗传算法模型深度解析与实战应用
摘要 遗传算法(GA)作为一种受生物进化启发的优化算法,在复杂问题求解中展现出独特优势。本文系统介绍了GA的核心理论、实现细节和应用经验。算法通过模拟自然选择机制,利用选择、交叉、变异三大操作在解空间中进行全局搜索。与梯度下降等传统方法相比,GA不依赖目标函数的连续性或可微性,特别适合处理离散优化、多目标优化等复杂问题。文中详细阐述了染色体编码、适应度函数设计、遗传操作实现等关键技术,并提供了Python代码实现示例。实践表明,GA的成功应用关键在于平衡探索与开发,通过精心调参维持种群多样性同时确保收敛效率
|
3月前
|
机器学习/深度学习 边缘计算 人工智能
粒子群算法模型深度解析与实战应用
蒋星熠Jaxonic是一位深耕智能优化算法领域多年的技术探索者,专注于粒子群优化(PSO)算法的研究与应用。他深入剖析了PSO的数学模型、核心公式及实现方法,并通过大量实践验证了其在神经网络优化、工程设计等复杂问题上的卓越性能。本文全面展示了PSO的理论基础、改进策略与前沿发展方向,为读者提供了一份详尽的技术指南。
粒子群算法模型深度解析与实战应用
|
3月前
|
机器学习/深度学习 算法 安全
小场景大市场:猫狗识别算法在宠物智能设备中的应用
将猫狗识别算法应用于宠物智能设备,是AIoT领域的重要垂直场景。本文从核心技术、应用场景、挑战与趋势四个方面,全面解析这一融合算法、硬件与用户体验的系统工程。
|
4月前
|
算法 数据可视化
matlab版本粒子群算法(PSO)在路径规划中的应用
matlab版本粒子群算法(PSO)在路径规划中的应用
|
5月前
|
存储 监控 算法
公司员工泄密防护体系中跳表数据结构及其 Go 语言算法的应用研究
在数字化办公中,企业面临员工泄密风险。本文探讨使用跳表(Skip List)数据结构优化泄密防护系统,提升敏感数据监测效率。跳表以其高效的动态数据处理能力,为企业信息安全管理提供了可靠技术支持。
148 0
|
2月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
313 0
|
2月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
224 2
|
3月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
231 3

热门文章

最新文章