AI公开课:19.04.18俞益洲—深睿医疗CS《计算机视觉的应用与落地》课堂笔记以及个人感悟

简介: AI公开课:19.04.18俞益洲—深睿医疗CS《计算机视觉的应用与落地》课堂笔记以及个人感悟

问答环节


小编正在使劲整理中……


雷鸣教授:在CV领域的投资有哪些?判断投资一家公司的条件?应用场景、经济上的收益。那么,如何评估团队?

吴世春VC:投了很多。关于如何判断,主要看能否落地解决问题,能否降低成本或者提高效率,解决的客户是谁,投的偏应用型的、垂直领域的公司。关于团队,要对行业足够理解(行业的痛点)为第一位,不一定要是大牛,但只要能够把好的东西学以致用,把这些东西进行产品化,不仅做的好还要卖的好。

雷鸣教授:探讨计算机视觉领域,目前非常热,今天是不是风头浪尖了,未来是否还有突破,哪些方向有真实进展?

鲁继文教授:CV领域的确取得了很大的发展,关于未来,不单单检测还要有决策问题。未来会走向3D的,结合很多好的传感器。目前计算机领域,做的很好的是感知,未来应该走向认知,虽然很难,但是希望还是有突破。

雷鸣教授:关于GAN,这个方向,也是很有意思的。关于CV领域的技术落地,看未来3~5年,还会有哪些好的机会,适合初创企业,会有快速的成长?

俞益洲教授:讲两个吧,一个是人机交互,CV结合NLP进行多模态融合和理解,进行无障碍的沟通,这个应用场景是很多的,比如服务行业,情感交流,教育行业,游戏行业(特别运动类)等。

吴世春VC:小的点来分析,我们投了好朋友科技,利用CV来降低一些成本,变废为宝。再比如垃圾分类等领域,也有很多公司也有在做。

鲁继文教授:未来的手机是否会被其他AI智能产品替代,对机器实现智能化,第二,需要结合一些特定场景结合,比如工业的一些缺陷检测。

雷鸣教授:其实,生成领域会有更大的有趣的东西,尤其是娱乐方面,比如卡通,现在静态图片已经可以以假乱真。内容生产会有很多的东西出来。


个评:创业,要理解行业痛点,降成本、提效率,比别人的好,才算牛!

备注:以上对话环节的文本编辑,为博主总结,与原文稍微有异,请以原文录音为准。时间紧迫,如有错误,欢迎网友留言指出、探讨。



相关文章
|
3月前
|
机器学习/深度学习 人工智能 PyTorch
AI计算机视觉笔记三十二:LPRNet车牌识别
LPRNet是一种基于Pytorch的高性能、轻量级车牌识别框架,适用于中国及其他国家的车牌识别。该网络无需对字符进行预分割,采用端到端的轻量化设计,结合了squeezenet和inception的思想。其创新点在于去除了RNN,仅使用CNN与CTC Loss,并通过特定的卷积模块提取上下文信息。环境配置包括使用CPU开发板和Autodl训练环境。训练和测试过程需搭建虚拟环境并安装相关依赖,执行训练和测试脚本时可能遇到若干错误,需相应调整代码以确保正确运行。使用官方模型可获得较高的识别准确率,自行训练时建议增加训练轮数以提升效果。
|
3月前
|
人工智能 开发工具 计算机视觉
AI计算机视觉笔记三十:yolov8_obb旋转框训练
本文介绍了如何使用AUTODL环境搭建YOLOv8-obb的训练流程。首先创建虚拟环境并激活,然后通过指定清华源安装ultralytics库。接着下载YOLOv8源码,并使用指定命令开始训练,过程中可能会下载yolov8n.pt文件。训练完成后,可使用相应命令进行预测测试。
|
3月前
|
人工智能 并行计算 测试技术
AI计算机视觉笔记三十一:基于UNetMultiLane的多车道线等识别
该项目基于开源数据集 VIL100 实现了 UNetMultiLane,用于多车道线及车道线类型的识别。数据集中标注了六个车道的车道线及其类型。项目详细记录了从环境搭建到模型训练与测试的全过程,并提供了在 CPU 上进行训练和 ONNX 转换的代码示例。训练过程约需 4 小时完成 50 个 epoch。此外,还实现了视频检测功能,可在视频中实时识别车道线及其类型。
|
机器学习/深度学习 人工智能 大数据
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
转载:【AI系统】AI的领域、场景与行业应用
本文概述了AI的历史、现状及发展趋势,探讨了AI在计算机视觉、自然语言处理、语音识别等领域的应用,以及在金融、医疗、教育、互联网等行业中的实践案例。随着技术进步,AI模型正从单一走向多样化,从小规模到大规模分布式训练,企业级AI系统设计面临更多挑战,同时也带来了新的研究与工程实践机遇。文中强调了AI基础设施的重要性,并鼓励读者深入了解AI系统的设计原则与研究方法,共同推动AI技术的发展。
转载:【AI系统】AI的领域、场景与行业应用
|
1天前
|
机器学习/深度学习 人工智能 算法
探索AI在医疗诊断中的应用与挑战
【10月更文挑战第21天】 本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状与面临的挑战,旨在为读者提供一个全面的视角,了解AI如何改变传统医疗模式,以及这一变革过程中所伴随的技术、伦理和法律问题。通过分析AI技术的优势和局限性,本文旨在促进对AI在医疗领域应用的更深层次理解和讨论。
|
7天前
|
人工智能 缓存 异构计算
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建
|
7天前
|
机器学习/深度学习 人工智能 物联网
AI赋能大学计划·大模型技术与应用实战学生训练营——电子科技大学站圆满结营
12月05日,由中国软件行业校园招聘与实习公共服务平台携手阿里魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·电子科技大学站圆满结营。
AI赋能大学计划·大模型技术与应用实战学生训练营——电子科技大学站圆满结营
|
12天前
|
机器学习/深度学习 人工智能 JSON
【实战干货】AI大模型工程应用于车联网场景的实战总结
本文介绍了图像生成技术在AIGC领域的发展历程、关键技术和当前趋势,以及这些技术如何应用于新能源汽车行业的车联网服务中。
190 32
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术深度解析:从基础到应用的全面介绍
人工智能(AI)技术的迅猛发展,正在深刻改变着我们的生活和工作方式。从自然语言处理(NLP)到机器学习,从神经网络到大型语言模型(LLM),AI技术的每一次进步都带来了前所未有的机遇和挑战。本文将从背景、历史、业务场景、Python代码示例、流程图以及如何上手等多个方面,对AI技术中的关键组件进行深度解析,为读者呈现一个全面而深入的AI技术世界。
36 10