DL之DNN优化技术:自定义MultiLayerNetExtend算法(BN层使用/不使用+权重初始值不同)对Mnist数据集训练评估学习过程

简介: DL之DNN优化技术:自定义MultiLayerNetExtend算法(BN层使用/不使用+权重初始值不同)对Mnist数据集训练评估学习过程

输出结

image.png

 

设计思

image.png

 

核心代

(x_train, t_train), (x_test, t_test) = load_mnist(normalize=True)

x_train = x_train[:1000]

t_train = t_train[:1000]

max_epochs = 20

train_size = x_train.shape[0]

batch_size = 100

learning_rate = 0.01

   bn_network = MultiLayerNetExtend(input_size=784, hidden_size_list=[100, 100, 100, 100, 100], output_size=10,

                                   weight_init_std=weight_init_std, use_batchnorm=True)

   network = MultiLayerNetExtend(input_size=784, hidden_size_list=[100, 100, 100, 100, 100], output_size=10,

                               weight_init_std=weight_init_std)

   optimizer = SGD(lr=learning_rate)  

   train_acc_list = []                              

   bn_train_acc_list = []

   iter_per_epoch = max(train_size / batch_size, 1)

   for i in range(1000000000):

       #定义x_batch、t_batch

       batch_mask = np.random.choice(train_size, batch_size)

       x_batch = x_train[batch_mask]

       t_batch = t_train[batch_mask]

 

       for _network in (bn_network, network):

           grads = _network.gradient(x_batch, t_batch)

           optimizer.update(_network.params, grads)    

 

       if i % iter_per_epoch == 0:

           train_acc = network.accuracy(x_train, t_train)      

           bn_train_acc = bn_network.accuracy(x_train, t_train)

           train_acc_list.append(train_acc)

           bn_train_acc_list.append(bn_train_acc)

 

           print("epoch:" + str(epoch_cnt) + " | " + str(train_acc) + " - " + str(bn_train_acc))

 

           epoch_cnt += 1

           if epoch_cnt >= max_epochs:

               break

             

   return train_acc_list, bn_train_acc_list  


目录
打赏
0
0
0
0
1043
分享
相关文章
基于BBO生物地理优化的三维路径规划算法MATLAB仿真
本程序基于BBO生物地理优化算法,实现三维空间路径规划的MATLAB仿真(测试版本:MATLAB2022A)。通过起点与终点坐标输入,算法可生成避障最优路径,并输出优化收敛曲线。BBO算法将路径视为栖息地,利用迁移和变异操作迭代寻优。适应度函数综合路径长度与障碍物距离,确保路径最短且安全。程序运行结果完整、无水印,适用于科研与教学场景。
基于NSGAII的的柔性作业调度优化算法MATLAB仿真,仿真输出甘特图
本程序基于NSGA-II算法实现柔性作业调度优化,适用于多目标优化场景(如最小化完工时间、延期、机器负载及能耗)。核心代码完成任务分配与甘特图绘制,支持MATLAB 2022A运行。算法通过初始化种群、遗传操作和选择策略迭代优化调度方案,最终输出包含完工时间、延期、机器负载和能耗等关键指标的可视化结果,为制造业生产计划提供科学依据。
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。
基于WOA鲸鱼优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本内容介绍了一种基于CNN-LSTM-SAM网络与鲸鱼优化算法(WOA)的时间序列预测方法。算法运行于Matlab2022a,完整程序无水印并附带中文注释及操作视频。核心流程包括数据归一化、种群初始化、适应度计算及参数更新,最终输出最优网络参数完成预测。CNN层提取局部特征,LSTM层捕捉长期依赖关系,自注意力机制聚焦全局特性,全连接层整合特征输出结果,适用于复杂非线性时间序列预测任务。
基于生物地理算法的MLP多层感知机优化matlab仿真
本程序基于生物地理算法(BBO)优化MLP多层感知机,通过MATLAB2022A实现随机数据点的趋势预测,并输出优化收敛曲线。BBO模拟物种在地理空间上的迁移、竞争与适应过程,以优化MLP的权重和偏置参数,提升预测性能。完整程序无水印,适用于机器学习和数据预测任务。
106 31
基于LSB最低有效位的音频水印嵌入提取算法FPGA实现,包含testbench和MATLAB对比
本项目展示了一种基于FPGA的音频水印算法,采用LSB(最低有效位)技术实现版权保护与数据追踪功能。使用Vivado2019.2和Matlab2022a开发,完整代码含中文注释及操作视频。算法通过修改音频采样点的最低有效位嵌入水印,人耳难以察觉变化。然而,面对滤波或压缩等攻击时,水印提取可能受影响。该项目运行效果无水印干扰,适合实时应用场景,核心逻辑简单高效,时间复杂度低。
基于GA遗传算法的拱桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现拱桥静载试验车辆最优布载的MATLAB仿真,旨在自动化确定车辆位置以满足加载效率要求(0.95≤ηq≤1.05),目标是使ηq尽量接近1,同时减少车辆数量和布载耗时。程序在MATLAB 2022A版本下运行,展示了工况1至工况3的测试结果。通过优化模型,综合考虑车辆重量、位置、类型及车道占用等因素,确保桥梁关键部位承受最大荷载,从而有效评估桥梁性能。核心代码实现了迭代优化过程,并输出最优布载方案及相关参数。
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。
基于模糊神经网络的金融序列预测算法matlab仿真
本程序为基于模糊神经网络的金融序列预测算法MATLAB仿真,适用于非线性、不确定性金融数据预测。通过MAD、RSI、KD等指标实现序列预测与收益分析,运行环境为MATLAB2022A,完整程序无水印。算法结合模糊逻辑与神经网络技术,包含输入层、模糊化层、规则层等结构,可有效处理金融市场中的复杂关系,助力投资者制定交易策略。
基于IEKF迭代扩展卡尔曼滤波算法的数据跟踪matlab仿真,对比EKF和UKF
本项目基于MATLAB2022A实现IEKF迭代扩展卡尔曼滤波算法的数据跟踪仿真,对比EKF和UKF的性能。通过仿真输出误差收敛曲线和误差协方差收敛曲线,展示三种滤波器的精度差异。核心程序包括数据处理、误差计算及可视化展示。IEKF通过多次迭代线性化过程,增强非线性处理能力;UKF避免线性化,使用sigma点直接处理非线性问题;EKF则通过一次线性化简化处理。

热门文章

最新文章