ML之SVM:利用SVM算法(超参数组合进行多线程网格搜索+3fCrVa)对20类新闻文本数据集进行分类预测、评估

简介: ML之SVM:利用SVM算法(超参数组合进行多线程网格搜索+3fCrVa)对20类新闻文本数据集进行分类预测、评估

输出结

Fitting 3 folds for each of 12 candidates, totalling 36 fits

[CV] svc__C=0.1, svc__gamma=0.01 .....................................

[CV] svc__C=0.1, svc__gamma=0.01 .....................................

[CV] svc__C=0.1, svc__gamma=0.01 .....................................

[CV] svc__C=0.1, svc__gamma=0.1 ......................................

[CV] ............................ svc__C=0.1, svc__gamma=0.01 -  10.2s

[CV] svc__C=0.1, svc__gamma=0.1 ......................................

[CV] ............................ svc__C=0.1, svc__gamma=0.01 -  10.4s

[CV] svc__C=0.1, svc__gamma=0.1 ......................................

[CV] ............................. svc__C=0.1, svc__gamma=0.1 -  10.4s

[CV] ............................ svc__C=0.1, svc__gamma=0.01 -  10.5s

[CV] svc__C=0.1, svc__gamma=1.0 ......................................

[CV] svc__C=0.1, svc__gamma=1.0 ......................................

[CV] ............................. svc__C=0.1, svc__gamma=0.1 -   9.2s

[CV] svc__C=0.1, svc__gamma=1.0 ......................................

[CV] ............................. svc__C=0.1, svc__gamma=0.1 -   9.2s

[CV] svc__C=0.1, svc__gamma=10.0 .....................................

[CV] ............................. svc__C=0.1, svc__gamma=1.0 -   9.2s

[CV] svc__C=0.1, svc__gamma=10.0 .....................................

[CV] ............................. svc__C=0.1, svc__gamma=1.0 -   9.3s

[CV] svc__C=0.1, svc__gamma=10.0 .....................................

[CV] ............................. svc__C=0.1, svc__gamma=1.0 -  11.1s

[CV] svc__C=1.0, svc__gamma=0.01 .....................................

[CV] ............................ svc__C=0.1, svc__gamma=10.0 -  11.1s

[CV] svc__C=1.0, svc__gamma=0.01 .....................................

[CV] ............................ svc__C=0.1, svc__gamma=10.0 -  11.3s

[CV] svc__C=1.0, svc__gamma=0.01 .....................................

[CV] ............................ svc__C=0.1, svc__gamma=10.0 -  11.8s

[CV] svc__C=1.0, svc__gamma=0.1 ......................................

[CV] ............................ svc__C=1.0, svc__gamma=0.01 -  12.3s

[CV] svc__C=1.0, svc__gamma=0.1 ......................................

[CV] ............................ svc__C=1.0, svc__gamma=0.01 -  12.4s

[CV] svc__C=1.0, svc__gamma=0.1 ......................................

[CV] ............................ svc__C=1.0, svc__gamma=0.01 -  12.6s

[CV] svc__C=1.0, svc__gamma=1.0 ......................................

[CV] ............................. svc__C=1.0, svc__gamma=0.1 -  12.0s

[CV] svc__C=1.0, svc__gamma=1.0 ......................................

[CV] ............................. svc__C=1.0, svc__gamma=0.1 -  13.1s

[CV] svc__C=1.0, svc__gamma=1.0 ......................................

[CV] ............................. svc__C=1.0, svc__gamma=0.1 -  13.1s

[CV] svc__C=1.0, svc__gamma=10.0 .....................................

[CV] ............................. svc__C=1.0, svc__gamma=1.0 -  12.9s

[CV] svc__C=1.0, svc__gamma=10.0 .....................................

[CV] ............................. svc__C=1.0, svc__gamma=1.0 -  13.0s

[CV] svc__C=1.0, svc__gamma=10.0 .....................................

[CV] ............................. svc__C=1.0, svc__gamma=1.0 -  11.8s

[CV] svc__C=10.0, svc__gamma=0.01 ....................................

[CV] ............................ svc__C=1.0, svc__gamma=10.0 -  11.6s

[CV] svc__C=10.0, svc__gamma=0.01 ....................................

[CV] ............................ svc__C=1.0, svc__gamma=10.0 -  11.6s

[CV] svc__C=10.0, svc__gamma=0.01 ....................................

[CV] ............................ svc__C=1.0, svc__gamma=10.0 -  11.7s

[CV] svc__C=10.0, svc__gamma=0.1 .....................................

[CV] ........................... svc__C=10.0, svc__gamma=0.01 -  11.4s

[CV] svc__C=10.0, svc__gamma=0.1 .....................................

[CV] ........................... svc__C=10.0, svc__gamma=0.01 -  11.5s

[CV] svc__C=10.0, svc__gamma=0.1 .....................................

[CV] ........................... svc__C=10.0, svc__gamma=0.01 -  11.7s

[CV] ............................ svc__C=10.0, svc__gamma=0.1 -  11.5s

[CV] svc__C=10.0, svc__gamma=1.0 .....................................

[CV] svc__C=10.0, svc__gamma=1.0 .....................................

[CV] ............................ svc__C=10.0, svc__gamma=0.1 -  12.3s

[CV] svc__C=10.0, svc__gamma=1.0 .....................................

[CV] ............................ svc__C=10.0, svc__gamma=0.1 -  12.6s

[CV] svc__C=10.0, svc__gamma=10.0 ....................................

[CV] ............................ svc__C=10.0, svc__gamma=1.0 -  12.6s

[CV] svc__C=10.0, svc__gamma=10.0 ....................................

[CV] ............................ svc__C=10.0, svc__gamma=1.0 -  12.8s

[CV] svc__C=10.0, svc__gamma=10.0 ....................................

[CV] ............................ svc__C=10.0, svc__gamma=1.0 -  13.0s

[CV] ........................... svc__C=10.0, svc__gamma=10.0 -  12.7s

[CV] ........................... svc__C=10.0, svc__gamma=10.0 -  12.7s

[CV] ........................... svc__C=10.0, svc__gamma=10.0 -  12.6s

[Parallel(n_jobs=-1)]: Done  36 out of  36 | elapsed:  1.8min finished

多线程:输出最佳模型在测试集上的准确性: 0.8226666666666667


 

设计思


image.png

 

核心代

class GridSearchCV(BaseSearchCV):

   """Exhaustive search over specified parameter values for an estimator.

 

   .. deprecated:: 0.18

   This module will be removed in 0.20.

   Use :class:`sklearn.model_selection.GridSearchCV` instead.

 

   Important members are fit, predict.

 

   GridSearchCV implements a "fit" and a "score" method.

   It also implements "predict", "predict_proba", "decision_function",

   "transform" and "inverse_transform" if they are implemented in the

   estimator used.

 

   The parameters of the estimator used to apply these methods are

    optimized

   by cross-validated grid-search over a parameter grid.

 

   Read more in the :ref:`User Guide <grid_search>`.

 

   Parameters

   ----------

   estimator : estimator object.

   A object of that type is instantiated for each grid point.

   This is assumed to implement the scikit-learn estimator interface.

   Either estimator needs to provide a ``score`` function,

   or ``scoring`` must be passed.

 

   param_grid : dict or list of dictionaries

   Dictionary with parameters names (string) as keys and lists of

   parameter settings to try as values, or a list of such

   dictionaries, in which case the grids spanned by each dictionary

   in the list are explored. This enables searching over any sequence

   of parameter settings.

 

   scoring : string, callable or None, default=None

   A string (see model evaluation documentation) or

   a scorer callable object / function with signature

   ``scorer(estimator, X, y)``.

   If ``None``, the ``score`` method of the estimator is used.

 

   fit_params : dict, optional

   Parameters to pass to the fit method.

 

   n_jobs: int, default: 1 :

   The maximum number of estimators fit in parallel.

 

   - If -1 all CPUs are used.

 

   - If 1 is given, no parallel computing code is used at all,

   which is useful for debugging.

 

   - For ``n_jobs`` below -1, ``(n_cpus + n_jobs + 1)`` are used.

   For example, with ``n_jobs = -2`` all CPUs but one are used.

 

   .. versionchanged:: 0.17

   Upgraded to joblib 0.9.3.

 

   pre_dispatch : int, or string, optional

   Controls the number of jobs that get dispatched during parallel

   execution. Reducing this number can be useful to avoid an

   explosion of memory consumption when more jobs get dispatched

   than CPUs can process. This parameter can be:

 

   - None, in which case all the jobs are immediately

   created and spawned. Use this for lightweight and

   fast-running jobs, to avoid delays due to on-demand

   spawning of the jobs

 

   - An int, giving the exact number of total jobs that are

   spawned

 

   - A string, giving an expression as a function of n_jobs,

   as in '2*n_jobs'

 

   iid : boolean, default=True

   If True, the data is assumed to be identically distributed across

   the folds, and the loss minimized is the total loss per sample,

   and not the mean loss across the folds.

 

   cv : int, cross-validation generator or an iterable, optional

   Determines the cross-validation splitting strategy.

   Possible inputs for cv are:

 

   - None, to use the default 3-fold cross-validation,

   - integer, to specify the number of folds.

   - An object to be used as a cross-validation generator.

   - An iterable yielding train/test splits.

 

   For integer/None inputs, if the estimator is a classifier and ``y`` is

   either binary or multiclass,

   :class:`sklearn.model_selection.StratifiedKFold` is used. In all

   other cases, :class:`sklearn.model_selection.KFold` is used.

 

   Refer :ref:`User Guide <cross_validation>` for the various

   cross-validation strategies that can be used here.

 

   refit : boolean, default=True

   Refit the best estimator with the entire dataset.

   If "False", it is impossible to make predictions using

   this GridSearchCV instance after fitting.

 

   verbose : integer

   Controls the verbosity: the higher, the more messages.

 

   error_score : 'raise' (default) or numeric

   Value to assign to the score if an error occurs in estimator fitting.

   If set to 'raise', the error is raised. If a numeric value is given,

   FitFailedWarning is raised. This parameter does not affect the refit

   step, which will always raise the error.

 

 

   Examples

   --------

   >>> from sklearn import svm, grid_search, datasets

   >>> iris = datasets.load_iris()

   >>> parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]}

   >>> svr = svm.SVC()

   >>> clf = grid_search.GridSearchCV(svr, parameters)

   >>> clf.fit(iris.data, iris.target)

   ...                             # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS

   GridSearchCV(cv=None, error_score=...,

   estimator=SVC(C=1.0, cache_size=..., class_weight=..., coef0=...,

   decision_function_shape='ovr', degree=..., gamma=...,

   kernel='rbf', max_iter=-1, probability=False,

   random_state=None, shrinking=True, tol=...,

   verbose=False),

   fit_params={}, iid=..., n_jobs=1,

   param_grid=..., pre_dispatch=..., refit=...,

   scoring=..., verbose=...)

 

 

   Attributes

   ----------

   grid_scores_ : list of named tuples

   Contains scores for all parameter combinations in param_grid.

   Each entry corresponds to one parameter setting.

   Each named tuple has the attributes:

 

   * ``parameters``, a dict of parameter settings

   * ``mean_validation_score``, the mean score over the

   cross-validation folds

   * ``cv_validation_scores``, the list of scores for each fold

 

   best_estimator_ : estimator

   Estimator that was chosen by the search, i.e. estimator

   which gave highest score (or smallest loss if specified)

   on the left out data. Not available if refit=False.

 

   best_score_ : float

   Score of best_estimator on the left out data.

 

   best_params_ : dict

   Parameter setting that gave the best results on the hold out data.

 

   scorer_ : function

   Scorer function used on the held out data to choose the best

   parameters for the model.

 

   Notes

   ------

   The parameters selected are those that maximize the score of the left

    out

   data, unless an explicit score is passed in which case it is used instead.

 

   If `n_jobs` was set to a value higher than one, the data is copied for

    each

   point in the grid (and not `n_jobs` times). This is done for efficiency

   reasons if individual jobs take very little time, but may raise errors if

   the dataset is large and not enough memory is available.  A

    workaround in

   this case is to set `pre_dispatch`. Then, the memory is copied only

   `pre_dispatch` many times. A reasonable value for `pre_dispatch` is `2 *

   n_jobs`.

 

   See Also

   ---------

   :class:`ParameterGrid`:

   generates all the combinations of a hyperparameter grid.

 

   :func:`sklearn.cross_validation.train_test_split`:

   utility function to split the data into a development set usable

   for fitting a GridSearchCV instance and an evaluation set for

   its final evaluation.

 

   :func:`sklearn.metrics.make_scorer`:

   Make a scorer from a performance metric or loss function.

 

   """

   def __init__(self, estimator, param_grid, scoring=None,

    fit_params=None,

       n_jobs=1, iid=True, refit=True, cv=None, verbose=0,

       pre_dispatch='2*n_jobs', error_score='raise'):

       super(GridSearchCV, self).__init__(estimator, scoring, fit_params,

        n_jobs, iid, refit, cv, verbose, pre_dispatch, error_score)

       self.param_grid = param_grid

       _check_param_grid(param_grid)

 

   def fit(self, X, y=None):

       """Run fit with all sets of parameters.

       Parameters

       ----------

       X : array-like, shape = [n_samples, n_features]

           Training vector, where n_samples is the number of samples and

           n_features is the number of features.

       y : array-like, shape = [n_samples] or [n_samples, n_output],

        optional

           Target relative to X for classification or regression;

           None for unsupervised learning.

       """

       return self._fit(X, y, ParameterGrid(self.param_grid))


相关文章
|
11月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
1047 6
|
4月前
|
机器学习/深度学习 监控 算法
局域网行为监控软件 C# 多线程数据包捕获算法:基于 KMP 模式匹配的内容分析优化方案探索
本文探讨了一种结合KMP算法的多线程数据包捕获与分析方案,用于局域网行为监控。通过C#实现,该系统可高效检测敏感内容、管理URL访问、分析协议及审计日志。实验表明,相较于传统算法,KMP在处理大规模网络流量时效率显著提升。未来可在算法优化、多模式匹配及机器学习等领域进一步研究。
106 0
|
9月前
|
机器学习/深度学习 算法 数据可视化
利用SVM(支持向量机)分类算法对鸢尾花数据集进行分类
本文介绍了如何使用支持向量机(SVM)算法对鸢尾花数据集进行分类。作者通过Python的sklearn库加载数据,并利用pandas、matplotlib等工具进行数据分析和可视化。
673 70
|
10月前
|
Java
【JavaEE】——多线程常用类
Callable的call方法,FutureTask类,ReentrantLock可重入锁和对比,Semaphore信号量(PV操作)CountDownLatch锁存器,
|
10月前
|
Java 程序员 调度
【JavaEE】线程创建和终止,Thread类方法,变量捕获(7000字长文)
创建线程的五种方式,Thread常见方法(守护进程.setDaemon() ,isAlive),start和run方法的区别,如何提前终止一个线程,标志位,isinterrupted,变量捕获
|
10月前
|
安全 Java API
【JavaEE】多线程编程引入——认识Thread类
Thread类,Thread中的run方法,在编程中怎么调度多线程
|
11月前
|
安全 Java
Java多线程集合类
本文介绍了Java中线程安全的问题及解决方案。通过示例代码展示了使用`CopyOnWriteArrayList`、`CopyOnWriteArraySet`和`ConcurrentHashMap`来解决多线程环境下集合操作的线程安全问题。这些类通过不同的机制确保了线程安全,提高了并发性能。
184 1
|
12月前
|
Java 开发者
在Java多线程编程中,创建线程的方法有两种:继承Thread类和实现Runnable接口
【10月更文挑战第20天】在Java多线程编程中,创建线程的方法有两种:继承Thread类和实现Runnable接口。本文揭示了这两种方式的微妙差异和潜在陷阱,帮助你更好地理解和选择适合项目需求的线程创建方式。
193 3
|
12月前
|
Java
在Java多线程编程中,实现Runnable接口通常优于继承Thread类
【10月更文挑战第20天】在Java多线程编程中,实现Runnable接口通常优于继承Thread类。原因包括:1) Java只支持单继承,实现接口不受此限制;2) Runnable接口便于代码复用和线程池管理;3) 分离任务与线程,提高灵活性。因此,实现Runnable接口是更佳选择。
225 2
|
12月前
|
Java
Java中多线程编程的基本概念和创建线程的两种主要方式:继承Thread类和实现Runnable接口
【10月更文挑战第20天】《JAVA多线程深度解析:线程的创建之路》介绍了Java中多线程编程的基本概念和创建线程的两种主要方式:继承Thread类和实现Runnable接口。文章详细讲解了每种方式的实现方法、优缺点及适用场景,帮助读者更好地理解和掌握多线程编程技术,为复杂任务的高效处理奠定基础。
170 2

热门文章

最新文章