ML之LoR&Bagging&RF:依次利用Bagging、RF算法对泰坦尼克号数据集 (Kaggle经典案例)获救人员进行二分类预测——模型融合(一)

简介: ML之LoR&Bagging&RF:依次利用Bagging、RF算法对泰坦尼克号数据集 (Kaggle经典案例)获救人员进行二分类预测——模型融合

输出结果

image.png

image.png

image.png


设计思路

image.png

相关文章
|
5月前
|
数据采集 监控 安全
厂区地图导航制作:GIS技术与路径导航算法融合
在智能化、数字化时代,GIS技术为厂区的运营管理带来了革命性变化。本文探讨了如何利用GIS技术,通过数据采集、地图绘制、路径规划、位置定位和信息查询等功能,打造高效、精准的智能厂区地图导航系统,提升企业的竞争力和管理水平。
215 0
厂区地图导航制作:GIS技术与路径导航算法融合
|
10月前
|
机器学习/深度学习 算法 计算机视觉
[YOLOv8/YOLOv7/YOLOv5系列算法改进NO.5]改进特征融合网络PANET为BIFPN(更新添加小目标检测层yaml)
本文介绍了改进YOLOv5以解决处理复杂背景时可能出现的错漏检问题。
335 5
|
8月前
|
机器学习/深度学习 数据采集 算法
Python实现ISSA融合反向学习与Levy飞行策略的改进麻雀优化算法优化支持向量机回归模型(SVR算法)项目实战
Python实现ISSA融合反向学习与Levy飞行策略的改进麻雀优化算法优化支持向量机回归模型(SVR算法)项目实战
|
8月前
|
机器学习/深度学习 数据采集 算法
Python实现ISSA融合反向学习与Levy飞行策略的改进麻雀优化算法优化支持向量机分类模型(SVC算法)项目实战
Python实现ISSA融合反向学习与Levy飞行策略的改进麻雀优化算法优化支持向量机分类模型(SVC算法)项目实战
|
10月前
|
算法
MATLAB|【免费】融合正余弦和柯西变异的麻雀优化算法SCSSA-CNN-BiLSTM双向长短期记忆网络预测模型
这段内容介绍了一个使用改进的麻雀搜索算法优化CNN-BiLSTM模型进行多输入单输出预测的程序。程序通过融合正余弦和柯西变异提升算法性能,主要优化学习率、正则化参数及BiLSTM的隐层神经元数量。它利用一段简单的风速数据进行演示,对比了改进算法与粒子群、灰狼算法的优化效果。代码包括数据导入、预处理和模型构建部分,并展示了优化前后的效果。建议使用高版本MATLAB运行。
|
10月前
|
人工智能 算法 测试技术
论文介绍:进化算法优化模型融合策略
【5月更文挑战第3天】《进化算法优化模型融合策略》论文提出使用进化算法自动化创建和优化大型语言模型,通过模型融合提升性能并减少资源消耗。实验显示,这种方法在多种基准测试中取得先进性能,尤其在无特定任务训练情况下仍能超越参数更多模型。同时,该技术成功应用于创建具有文化意识的日语视觉-语言模型。然而,模型融合可能产生逻辑不连贯响应和准确性问题,未来工作将聚焦于图像扩散模型、自动源模型选择及生成自我改进的模型群体。[论文链接: https://arxiv.org/pdf/2403.13187.pdf]
213 1
|
10月前
|
机器学习/深度学习 算法 数据挖掘
SciPy与机器学习:融合科学计算与智能算法
【4月更文挑战第17天】本文探讨了如何结合SciPy与机器学习,SciPy作为Python科学计算库,为机器学习提供数学基础和工具。在机器学习中,SciPy用于特征选择(如ANOVA和SVD)、聚类(K-Means和层次聚类)、优化(梯度下降和牛顿法)以及信号处理。通过与scikit-learn等机器学习框架结合,实现高效数据处理和模式识别。
|
10月前
|
机器学习/深度学习 算法 Python
使用Python实现集成学习算法:Bagging与Boosting
使用Python实现集成学习算法:Bagging与Boosting
123 0
|
10月前
|
编解码 算法
基于双树复小波变换和稀疏表示的多光谱和彩色图像融合算法matlab仿真
基于双树复小波变换和稀疏表示的多光谱和彩色图像融合算法matlab仿真
|
10月前
|
算法
基于稀疏表示的小波变换多光谱图像融合算法matlab仿真
基于稀疏表示的小波变换多光谱图像融合算法matlab仿真

热门文章

最新文章