PolarDB-X 1.0-用户指南-数据导入导出-使用程序进行数据导入

本文涉及的产品
云原生数据库 PolarDB 分布式版,标准版 2核8GB
简介: 本文将介绍如何通过编写代码的方式,将导入数据到PolarDB-X中。

本文将介绍如何通过编写代码的方式,将导入数据到PolarDB-X中。

假设有一操作表:


CREATE TABLE `test1` (
    `id` int(11) NOT NULL,
    `k` int(11) NOT NULL DEFAULT '0',
    `c` char(120) NOT NULL DEFAULT '',
    `pad` char(60) NOT NULL DEFAULT '',
    PRIMARY KEY (`id`),
    KEY `k_1` (`k`)
) ENGINE = InnoDB DEFAULT CHARSET = utf8mb4 dbpartition by hash(`id`);

从数据库中导出源数据

源数据可以用户自行生成,也可以从数据库中导出,在数据库中导出可通过mysql -e命令的方式,PolarDB-X和MySQL都支持该方式,具体方法如下:


mysql -h ip  -P port -u usr -pPassword db_name -N -e "SELECT id,k,c,pad FROM test1;" >/home/data_1000w.txt
## 原始数据以制表符分隔,数据格式:188092293    27267211    59775766593-64673028018-...-09474402685    01705051424-...-54211554755
mysql -h ip  -P port -u usr -pPassword db_name -N -e "SELECT id,k,c,pad FROM test1;" | sed 's/\t/,/g' >/home/data_1000w.csv
## csv文件格式以逗号分隔,数据格式:188092293,27267211,59775766593-64673028018-...-09474402685,01705051424-...-54211554755

推荐对字符串进行处理,转变成csv文件格式,方便后续程序读取数据。

PolarDB-X中创建目标表

源数据不包括建表语句,所以需要手动在PolarDB-X目标数据库上创建表,关于PolarDB-X建表语句的语法请参见CREATE TABLE语句,例如:


CREATE TABLE `test1` (
    `id` int(11) NOT NULL,
    `k` int(11) NOT NULL DEFAULT '0',
    `c` char(120) NOT NULL DEFAULT '',
    `pad` char(60) NOT NULL DEFAULT '',
    PRIMARY KEY (`id`),
    KEY `k_1` (`k`)
) ENGINE = InnoDB DEFAULT CHARSET = utf8mb4 dbpartition by hash(`id`);

使用程序导入数据到PolarDB-X

您可以自行编写程序,连接PolarDB-X,然后读取本地数据,通过Batch Insert语句导入PolarDB-X中。

下面是一个简单的JAVA程序示例:


// 需要mysql-connector-java.jar, 详情界面:https://mvnrepository.com/artifact/mysql/mysql-connector-java
// 下载链接:https://repo1.maven.org/maven2/mysql/mysql-connector-java/8.0.20/mysql-connector-java-8.0.20.jar
// 注:不同版本的mysql-connector-java.jar,可能Class.forName("com.mysql.cj.jdbc.Driver")类路径不同
// 编译 javac LoadData.java
// 运行 java -cp .:mysql-connector-java-8.0.20.jar LoadData
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.SQLException;
public class LoadData {
    public static void main(String[] args) throws IOException, ClassNotFoundException, SQLException {
        File dataFile = new File("/home/data_1000w.csv");
        String sql = "insert into test1(id, k, c, pad) values(?, ?, ?, ?)";
        int batchSize = 1000;
        try (
            Connection connection = getConnection("ip", 3306, "db", "usr", "password");
            BufferedReader br = new BufferedReader(new FileReader(dataFile))) {
            String line;
            PreparedStatement st = connection.prepareStatement(sql);
            long startTime = System.currentTimeMillis();
            int batchCount = 0;
            while ((line = br.readLine()) != null) {
                String[] data = line.split(",");
                st.setInt(1, Integer.valueOf(data[0]));
                st.setInt(2, Integer.valueOf(data[1]));
                st.setObject(3, data[2]);
                st.setObject(4, data[3]);
                st.addBatch();
                if (++batchCount % batchSize == 0) {
                    st.executeBatch();
                    System.out.println(String.format("insert %d records", batchCount));
                }
            }
            if (batchCount % batchSize != 0) {
                st.executeBatch();
            }
            long cost = System.currentTimeMillis() - startTime;
            System.out.println(String.format("Take %d second,insert %d records, tps %d", cost/1000, batchCount, batchCount/(cost/1000)));
        }
    }
    /**
     * 获取数据库连接
     *
     * @param host     数据库地址
     * @param port     端口
     * @param database 数据库名称
     * @param username 用户名
     * @param password 密码
     * @return
     * @throws ClassNotFoundException
     * @throws SQLException
     */
    private static Connection getConnection(String host, int port, String database, String username, String password)
        throws ClassNotFoundException, SQLException {
        Class.forName("com.mysql.cj.jdbc.Driver");
        String url = String.format(
            "jdbc:mysql://%s:%d/%s?autoReconnect=true&socketTimeout=600000&rewriteBatchedStatements=true", host, port,
            database);
        Connection con = DriverManager.getConnection(url, username, password);
        return con;
    }
}

您可以根据实际应用场景编写程序,设置合适的batch size和多线程导入,能够加快性能。

相关文章
|
10月前
|
存储 人工智能 Cloud Native
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
在9月20日2024云栖大会上,阿里云智能集团副总裁,数据库产品事业部负责人,ACM、CCF、IEEE会士(Fellow)李飞飞发表《从数据到智能:Data+AI驱动的云原生数据库》主题演讲。他表示,数据是生成式AI的核心资产,大模型时代的数据管理系统需具备多模处理和实时分析能力。阿里云瑶池将数据+AI全面融合,构建一站式多模数据管理平台,以数据驱动决策与创新,为用户提供像“搭积木”一样易用、好用、高可用的使用体验。
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
|
10月前
|
人工智能 关系型数据库 分布式数据库
拥抱Data+AI|“全球第一”雅迪如何实现智能营销?DMS+PolarDB注入数据新活力
针对雅迪“云销通App”的需求与痛点,本文将介绍阿里云瑶池数据库DMS+PolarDB for AI提供的一站式Data+AI解决方案,助力销售人员高效用数,全面提升销售管理效率。
|
8月前
|
存储 关系型数据库 分布式数据库
PolarDB PG 版冷热数据分层功能介绍
本文介绍了云原生数据库PolarDB PG版的冷热数据分层存储功能,涵盖其原理、特性及最佳实践。冷热分层存储通过将冷数据归档至OSS(对象存储服务),实现低成本高效存储,同时保持SQL操作透明性和性能优化。支持多种分层模式,如表与索引分层、大字段独立归档等,并提供压缩和缓存机制以提升访问速度。此外,还介绍了如何通过DDL语句轻松转存数据至OSS,以及一系列最佳实践,包括自动冷热分层、无锁表转存和一键转存等功能。
487 36
|
7月前
|
SQL 关系型数据库 分布式数据库
PolarDB 开源基础教程系列 7.1 快速构建“海量逼真”数据
本文介绍了如何使用PostgreSQL和PolarDB快速生成“海量且逼真”的测试数据,以满足不同业务场景的需求。传统数据库测试依赖标准套件(如TPC-C、TPC-H),难以生成符合特定业务特征的复杂数据。通过自定义函数(如`gen_random_int`、`gen_random_string`等)、SRF函数(如`generate_series`)和pgbench工具,可以高效生成大规模、高仿真度的数据,并进行压力测试。文中还提供了多个示例代码展示.
212 7
|
7月前
|
人工智能 关系型数据库 分布式数据库
阿里云PolarDB重磅发布云原生与Data+AI新特性,打造智能时代数据引擎
阿里云PolarDB重磅发布云原生与Data+AI新特性,打造智能时代数据引擎
397 0
|
11月前
|
存储 人工智能 Cloud Native
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
阿里云瑶池在2024云栖大会上重磅发布由Data+AI驱动的多模数据管理平台DMS:OneMeta+OneOps,通过统一、开放、多模的元数据服务实现跨环境、跨引擎、跨实例的统一治理,可支持高达40+种数据源,实现自建、他云数据源的无缝对接,助力业务决策效率提升10倍。
|
存储 人工智能 Cloud Native
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
阿里云数据库重磅升级!元数据服务OneMeta + OneOps统一管理多模态数据
|
存储 SQL Cloud Native
揭秘!PolarDB-X存储引擎如何玩转“时间魔术”?Lizard多级闪回技术让你秒回数据“黄金时代”!
【8月更文挑战第25天】PolarDB-X是一款由阿里巴巴自主研发的云原生分布式数据库,以其高性能、高可用性和出色的可扩展性著称。其核心竞争力之一是Lizard存储引擎的多级闪回技术,能够提供高效的数据恢复与问题诊断能力。本文通过一个电商公司的案例展示了一级与二级闪回技术如何帮助快速恢复误删的大量订单数据,确保业务连续性不受影响。一级闪回通过维护最近时间段内历史数据版本链,支持任意时间点查询;而二级闪回则通过扩展数据保留时间并采用成本更低的存储方式,进一步增强了数据保护能力。多级闪回技术的应用显著提高了数据库的可靠性和灵活性,为企业数据安全保驾护航。
176 1
|
数据库 Windows
超详细步骤解析:从零开始,手把手教你使用 Visual Studio 打造你的第一个 Windows Forms 应用程序,菜鸟也能轻松上手的编程入门指南来了!
【8月更文挑战第31天】创建你的第一个Windows Forms (WinForms) 应用程序是一个激动人心的过程,尤其适合编程新手。本指南将带你逐步完成一个简单WinForms 应用的开发。首先,在Visual Studio 中创建一个“Windows Forms App (.NET)”项目,命名为“我的第一个WinForms 应用”。接着,在空白窗体中添加一个按钮和一个标签控件,并设置按钮文本为“点击我”。然后,为按钮添加点击事件处理程序`button1_Click`,实现点击按钮后更新标签文本为“你好,你刚刚点击了按钮!”。
1235 0
|
安全 druid Java
Seata 1.8.0 正式发布,支持达梦和 PolarDB-X 数据库
Seata 1.8.0 正式发布,支持达梦和 PolarDB-X 数据库
1002 97
Seata 1.8.0 正式发布,支持达梦和 PolarDB-X 数据库

相关产品

  • 云原生分布式数据库 PolarDB-X